Chemical mechanical planarization (CMP) is a technology that planarizes the surfaces of semiconductor devices using chemical reaction and mechanical material removal, and it is an essential process in manufacturing highly integrated semiconductors. In the CMP process, a conditioning process using a diamond conditioner is applied to remove by-products generated during processing and ensure the surface roughness of the CMP pad. In previous studies, prediction of pad wear by CMP conditioning has depended on numerical analysis studies based on mathematical simulation. In this study, using an artificial neural network, the ratio of conditioner coverage to the distance between centers in the conditioning system is input, and the average conditioning density, standard deviation, nonuniformity (NU), and conditioning density distribution are trained as targets. The result of training seems to predict the target data well, although the average conditioning density, standard deviation, and NU in the contact area of wafer and pad and all areas of the pad have some errors. In addition, in the case of NU, the prediction calculated from the training results of the average conditioning density and standard deviation can reduce the error of training compared with the results predicted through training. The results of training on the conditioning density profile generally follow the target data well, confirming that the shape of the conditioning density profile can be predicted.
초당 최소 5만 건에서 50만 건이 넘는 삽입트랜잭션이 발생하는 반도체 자동 생산 공정 시스템은 대량의 데이터를 실시간으로 저장하는 저장관리시스템을 필요로 한다. 대용량의 데이터를 빠르고 안정적으로 저장하기 위해서 많은 저장관리시스템이 연구되었다. 기존의 저장관리시스템은 대표적으로 전형적인 디스크 기반 DBMS가 있다. 그러나 디스크 기반 DBMS는 초당 50만 건의 삽입트랜잭션 처리는 매우 어렵다. 그래서 디스크 기반 DBMS의 성능을 향상시키기 위해 데이터를 디스크가 아닌 메인메모리를사용하는 메인메모리 DBMS가 등장하였다. 그러나 메인메모리 DBMS는 메인메모리 용량의 한계로 인해 대용량 데이터를 저장하는 것은 어렵다. 본 논문에서는 초당 5만 건 이상의 삽입트랜잭션을 지원하고 대용량 데이터를 저비용으로 저장하기 위해 블록단위의 삽입 트랜잭션을 사용한 저장관리시스템을 제안한다. 블록단위의 삽입 트랜잭션은 개별 튜플 단위의 로그기록 비용과 인덱스 생성비용을 블록단위로 변경시켜 비용을 크게 감소시킬 수 있다. 또한 제안시스템은 데이터를 압축 저장하여 저장 비용을 감소시킬 수 있다. 그러나 압축기법은 데이터의 필드정보가 유실되어 모든 데이터의 압축을 해제하는 비용이 발생한다. 이 문제를 해결하기 위해 제안시스템은 압축 시 압축되는 블록의 인덱스를 생성하여 데이터 검색 속도를 향상시켰다. 본 제안시스템은 반도체 공정에서 빠르게 발생하는 대용량 데이터를 고속으로 저장할 수 있고, 디스크 저 장비용을 감소시킬 수 있다.
JSTS:Journal of Semiconductor Technology and Science
/
제15권2호
/
pp.177-183
/
2015
A high speed VLSI digital Winner-Take-All (WTA) circuit called simultaneous digital WTA (SDWTA) circuit is presented in this paper. A minimized comparison-cell (w-cell) is developed to reduce the size and to achieve high-speed. The w-cell which is suitable for VLSI implementation consists of only four transistors. With a minimized comparison-cell structure SDWTA can compare thousands of data simultaneously. SDWTA is scalable with O(mlog n) time-complexity for n of m-bit data. According to simulations, it takes 16.5 ns with $1.2V-0.13{\mu}m$ process technology in finding a winner among 1024 of 16-bit data.
산업 인공지능의 발달과 함께 반도체의 수요가 크게 증가하고 있다. 시장 수요에 대응하기 위해 패키징 공정에서 자동 결함 검출의 중요성 역시 증가하고 있다. 이에 따라, 패키지의 자동 불량 검사를 위한 딥러닝 기반의 방법론들의 연구가 활발히 이루어 지고 있다. 딥러닝 기반의 모델은 학습을 위해서 대량의 고해상도 데이터를 필요로 하나, 보안이 중요한 반도체 분야의 특성상 관련 데이터의 공유 및 레이블링이 쉽지 않아 모델의 학습이 어려운 한계를 지니고 있다. 또한 고해상도 이미지를 생성하기 위해 상당한 컴퓨팅 자원이 요구되는데, 본 연구에서는 분할정복 접근법을 통해 적은 컴퓨팅 자원으로 딥러닝 모델 학습을 위한 충분한 양의 데이터를 확보하는 방법을 소개한다. 제안된 방법은 높은 해상도의 이미지를 분할하고 각 영역에 조건 레이블을 부여한 후, 독립적인 부분 영역과 경계를 학습시켜, 경계 손실이 일관적인 이미지를 생성하도록 유도한다. 이후, 분할된 이미지를 하나로 통합하여, 최종적으로 모델이 고해상도의 이미지를 생성하도록 구성하였다. 실험 결과, 본 연구를 통해 증강된 이미지들은 높은 효율성, 일관성, 품질 및 범용성을 보였다.
통계적인 공정 제어 기법을 회분식 공정에 적용하여, 일반적인 회분식 공정의 데이터를 통해 보다 빠르고, 손쉽게 공정의 상태를 진단할 수 있는 시스템을 구현해 보았다. 대표적인 회분식 공정의 하나인 반도체 식각공정과 반회분식 스타이렌-부타디엔 고무 생산 공정의 데이터를 이용하여 공정 변수와 공정의 상태간의 연관 관계를 규명할 수 있는 모델을 수립하였으며, 이 모델의 출력(output) 결과를 이용해 통계적 공정 제어 차트를 구성하고, 시간에 따른 공정의 추이를 분석해 이상을 판별해 보았다. 회분식 공정의 다축(multi-way) 데이터를 두개의 축으로 만드는 펼치기(unfolding) 과정을 거쳤으며, 모델링 방법으로는 Support Vector Regression 및 Partial Least Square 등의 다변량 회귀분석 방법을 이용하였다. 또한 에러차트 및 변수 기여도 차트(variable contribution chart)를 이용해 이상의 세기, 형태 및 이상 데이터에 대한 각 변수들의 기여도를 계산해 보았으며, 그 결과 이상의 발생 유무 및 발생시점 뿐만아니라 이상의 세기 및 원인 까지 진단해 볼 수 있는 우수한 성능을 보이는 것을 확인할 수 있었다.
Attenuated PSM lithography 공정에서 overlay margin 확보 및 side-lobe 제거를 위해 기존의 Cr shield 방식의 단점인 복잡한 mask 제작공정과 구조를 단순화하기 위한 방법으로 scattering bar 방식을 제안하였다. Scattering bar는 Cr 보조패턴처럼 완전히 빛을 차단하는 것이 아니라 약간의 빛을 투과시켜 보강된 intensity를 상쇄하므로 side-lobe를 억제하는 방법으로 metal pattern을 생성할 때 scattering bar도 동시에 만들어 mask제작에 필요한 공정횟수를 줄이고 mask구조 역시 단순하게 한다 그리고 동시에 DOF(depth of focus)를 향상시킨다. Background clear pattern의 경우에 발생하는 side-lobe도 scattering bar를 이용하여 효율적으로 제거되었다.
There has been an increase of using Bosch Process to fabricate MEMS Device, TSV, Power chip for straight etching profile. Essentially, the interest of TSV technology is rapidly floated, accordingly the demand of Bosch Process is able to hold the prominent position for straight etching of Si or another wafers. Recently, the process to prevent under etching or over etching using EPD equipment is widely used for improvement of mechanical, electrical properties of devices. As an EPD device, the OES is widely used to find accurate end point of etching. However, it is difficult to maintain the light source from view port of chamber because of contamination caused by ion conflict and byproducts in the chamber. In this study, we adapted the SPOES to avoid lose of signal and detect less open ratio under 1 %. We use 12inch Si wafer and execute the through etching 500um of thickness. Furthermore, to get the clear EPD data, we developed an algorithm to only receive the etching part without deposition part. The results showed possible to find End Point of under 1 % of open ratio etching process.
JSTS:Journal of Semiconductor Technology and Science
/
제17권3호
/
pp.363-369
/
2017
Phase-change random access memory (PRAM) has been emerged as a potential memory due to its excellent scalability, non-volatility, and random accessibility. But, as the cell current is reducing due to cell size scaling, the read-sensing window margin is also decreasing due to increased variation of cell performance distribution, resulting in a substantial loss of yield. To cope with this problem, a novel adaptive read-sensing reference current generation scheme is proposed, whose trimming range and resolution are adaptively controlled depending on process conditions. Performance evaluation in a 58-nm CMOS process indicated that the proposed read-sensing reference current scheme allowed the integral nonlinearity (INL) to be improved from 10.3 LSB to 2.14 LSB (79% reduction), and the differential nonlinearity (DNL) from 2.29 LSB to 0.94 LSB (59% reduction).
A useful method to detect tool breakage suing neural network of cutting force signal is porposed and implemented in a basic cutting process. Cutting signal is gathered by tool dynamometer and normalized as a preprocessing. The cutting force signal level is continually monitored and compared with the predefined level. The neural network has been trained normalized sample data of the normal operation and cata-strophic tool failure using backpropagation learning process. The develop[ed system is verified to be very effective in real-time usage with minor modification in conventional cutting processes.
In this study, PC-based slicing machine and driving software were constructed for the purpose of automation of semi-conductor cutting process. The biggest feature of software is variation of parameter and include data base, signal monitoring, error report, corresponding action or automatic motion planing. Parameters were drawn and algorithms were developed to make software by GUI interface. The cutting experiment was done for sampled wafer to see the effectiveness of the soft automation. From the experimented and implemented results, it is shown that parameters for automation of slicing process could be drawn, then its algorithms constructed. It could be considered what is the merit of this slicing machine by comparing the PC-based and the NC-based.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.