• Title/Summary/Keyword: Semiconductor Packaging

Search Result 280, Processing Time 0.022 seconds

Electrical analysis of Metal-Ferroelectric - Semiconductor Field - Effect Transistor with SPICE combined with Technology Computer-Aided Design (Technology Computer-Aided Design과 결합된 SPICE를 통한 금속-강유전체-반도체 전계효과 트랜지스터의 전기적 특성 해석)

  • Kim, Yong-Tae;Shim, Sun-Il
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.12 no.1 s.34
    • /
    • pp.59-63
    • /
    • 2005
  • A simulation method combined with the simulation program with integrated circuit emphasis (SPICE) and the technology computer-aided design (TCAD) has been proposed to estimate the electrical characteristics of the metal-ferroelectric-semiconductor field effect transistor (MFS/MFISFET). The complex behavior of the ferroelectric property was analyzed and surface potential of the channel region in the MFS gate structure was calculated with the numerical TCAD method. Since the calculated surface potential is equivalent with the surface potential obtained with the SPICE model of the conventional MOSFET, we can obtain the current-voltage characteristics of MFS/MFISFET corresponding to the applied gate bias. Therefore, the proposed method will be very useful for the design of the integrated circuits with MFS/MFISFET memory cell devices.

  • PDF

Characteristics of High Speed Optical Transmitter Module Fabricated by Using Laser welding Technique (레이저웰딩기술을 이용한 고속 광통신용 송신모듈 제작 및 특성 연구)

  • Kang, Seung-Goo;Song, Min-Kyu;Jang, Dong-Hoon;Pyun, Kwang-Eui
    • Proceedings of the KIEE Conference
    • /
    • 1995.11a
    • /
    • pp.552-554
    • /
    • 1995
  • In long-haul high speed optical communications, the distance between a transmitter and a receiver depends on the amount of light coupled to a single mode optical fiber from the laser diode(LD) as well as the LD characteristic itself. And the transmitter module must have long lifetime. high reliability, and even simple structure. Such points have induced laser welding technique to be a first choice in opto-electronic module packaging because it can provide strong weld joint in a short time with very small coupling loss. In this paper, packaging considerations and characteristics for high speed LD modules are discussed. They include optical path design factors for larger aligning tolerance, and novel laser welding processes for component assembly. For low coupling loss after laser welding processes, the optical path for optimum coupling of a single mode optical fiber into the LD chip was designed with the GRIN lens system providing sufficiently large aligning tolerance both in the radial and axial directions. The measured sensitivity of the LD module was better than -33.7dBm(back to back) at a BER of $10^{-10}$ with a 2.5Gbps NRZ $2^{23}-1$ PRBS.

  • PDF

Determination of New Layout in a Semiconductor Packaging Substrate Line using Simulation and AHP/DEA (시뮬레이션과 AHP/DEA를 이용한 반도체 부품 생산라인 개선안 결정)

  • Kim, Dong-Soo;Park, Chul-Soon;Moon, Dug-Hee
    • IE interfaces
    • /
    • v.25 no.2
    • /
    • pp.264-275
    • /
    • 2012
  • The process of semiconductor(IC Package) manufacturing usually includes lots of complex and sequential processes. Many kinds of equipments are installed with the mixed concept of serial and parallel manufacturing system. The business environments of the semiconductor industry have been changed frequently, because new technologies are developed continuously. It is the main reason of new investment plan and layout consideration. However, it is difficult to change the layout after installation, because the major equipments are expensive and difficult to move. Furthermore, it is usually a multiple-objective problem. Thus, new investment or layout change should be carefully considered when the production environments likewise product mix and production quantity are changed. This paper introduces a simulation case study of a Korean company that produces packaging substrates(especially lead frames) and requires multi-objective decision support. $QUEST^{(R)}$ is used for simulation modelling and AHP(Analytic Hierarchy Process) and DEA(Data Envelopment Analysis) are used for weighting of qualitative performance measures and solving multiple-objective layout problem, respectively.

Cure Properties of Isocyanurate Type Epoxy Resin Systems for FO-WLP (Fan Out-Wafer Level Package) Next Generation Semiconductor Packaging Materials (FO-WLP (Fan Out-Wafer Level Package) 차세대 반도체 Packaging용 Isocyanurate Type Epoxy Resin System의 경화특성연구)

  • Kim, Whan Gun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.1
    • /
    • pp.65-69
    • /
    • 2019
  • The cure properties of ethoxysilyl diglycidyl isocyanurate(Ethoxysilyl-DGIC) and ethylsilyl diglycidyl isocyanurate (Ethylsilyl-DGIC) epoxy resin systems with a phenol novolac hardener were investigated for anticipating fan out-wafer level package(FO-WLP) applications, comparing with ethoxysilyl diglycidyl ether of bisphenol-A(Ethoxysilyl-DGEBA) epoxy resin systems. The cure kinetics of these systems were analyzed by differential scanning calorimetry with an isothermal approach, and the kinetic parameters of all systems were reported in generalized kinetic equations with diffusion effects. The isocyanurate type epoxy resin systems represented the higher cure conversion rates comparing with bisphenol-A type epoxy resin systems. The Ethoxysilyl-DGIC epoxy resin system showed the highest cure conversion rates than Ethylsilyl-DGIC and Ethoxysilyl-DGEBA epoxy resin systems. It can be figured out by kinetic parameter analysis that the highest conversion rates of Ethoxysilyl-DGIC epoxy resin system are caused by higher collision frequency factor. However, the cure conversion rate increases of the Ethylsilyl-DGEBA comparing with Ethoxysilyl-DGEBA are due to the lower activation energy of Ethylsilyl-DGIC. These higher cure conversion rates in the isocyanurate type epoxy resin systems could be explained by the improvements of reaction molecule movements according to the compact structure of isocyanurate epoxy resin.

Transient Liquid Phase Diffusion Bonding Technology for Power Semiconductor Packaging (전력반도체 접합용 천이액상확산접합 기술)

  • Lee, Jeong-Hyun;Jung, Do-hyun;Jung, Jae-Pil
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.25 no.4
    • /
    • pp.9-15
    • /
    • 2018
  • This paper shows the principles and characteristics of the transient liquid phase (TLP) bonding technology for power modules packaging. The power module is semiconductor parts that change and manage power entering electronic devices, and demand is increasing due to the advent of the fourth industrial revolution. Higher operation temperatures and increasing current density are important for the performance of power modules. Conventional power modules using Si chip have reached the limit of theoretical performance development. In addition, their efficiency is reduced at high temperature because of the low properties of Si. Therefore, Si is changed to silicon carbide (SiC) and gallium nitride (GaN). Various methods of bonding have been studied, like Ag sintering and Sn-Au solder, to keep up with the development of chips, one of which is TLP bonding. TLP bonding has the advantages in price and junction temperature over other technologies. In this paper, TLP bonding using various materials and methods is introduced. In addition, new TLP technologies that are combined with other technologies such as metal powder mixing and ultrasonic technology are also reviewed.

A Study of Warpage Analysis According to Influence Factors in FOWLP Structure (FOWLP 구조의 영향 인자에 따른 휨 현상 해석 연구)

  • Jung, Cheong-Ha;Seo, Won;Kim, Gu-Sung
    • Journal of the Semiconductor & Display Technology
    • /
    • v.17 no.4
    • /
    • pp.42-45
    • /
    • 2018
  • As The semiconductor decrease from 10 nanometer to 7 nanometer, It is suggested that "More than Moore" is needed to follow Moore's Law, which has been a guide for the semiconductor industry. Fan-Out Wafer Level Package(FOWLP) is considered as the key to "More than Moore" to lead the next generation in semiconductors, and the reasons are as follows. the fan-out WLP does not require a substrate, unlike conventional wire bonding and flip-chip bonding packages. As a result, the thickness of the package reduces, and the interconnection becomes shorter. It is easy to increase the number of I / Os and apply it to the multi-layered 3D package. However, FOWLP has many issues that need to be resolved in order for mass production to become feasible. One of the most critical problem is the warpage problem in a process. Due to the nature of the FOWLP structure, the RDL is wired to multiple layers. The warpage problem arises when a new RDL layer is created. It occurs because the solder ball reflow process is exposed to high temperatures for long periods of time, which may cause cracks inside the package. For this reason, we have studied warpage in the FOWLP structure using commercial simulation software through the implementation of the reflow process. Simulation was performed to reproduce the experiment of products of molding compound company. Young's modulus and poisson's ratio were found to be influenced by the order of influence of the factors affecting the distortion. We confirmed that the lower young's modulus and poisson's ratio, the lower warpage.

Technology Trends of Semiconductor Package for ESG (ESG를 위한 반도체 패키지 기술 트렌드)

  • Minsuk Suh
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.30 no.3
    • /
    • pp.35-39
    • /
    • 2023
  • ESG (Environment, Social, Governance) has become a major guideline for many companies to improve corporate value and enable sustainable management. Among them, the environment requires a technological approach. This is because technological solutions are needed to reduce or prevent environmental pollution and save energy. Semiconductor package technology has been developed to better satisfy the essential roles of semiconductor packaging: chip protection, electrical/mechanical connection, and heat dissipation. Accordingly, technologies have been developed to improve heat dissipation effect, improve electrical/mechanical properties, improve chip protection reliability, stacking and miniaturization, and reduce costs. Among them, heat dissipation technology increases thermal efficiency and reduces energy consumption for cooling. Also, technology to improve electrical characteristics has had an impact on the environment by reducing energy consumption. Technologies that recycling or reducing material consumption reduce environmental pollution. And technologies that replace environmentally harmful substances contribute to environmental improvement, in particular. In this paper, I summarize trends in semiconductor package technologies to prevent pollution and improve environment.

System-on-Package (SOP) Vision, Status and Challenges

  • Tummala, Rao R.
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2000.04a
    • /
    • pp.3-7
    • /
    • 2000
  • In summary, a fundamentally new paradigm called System-on-Package could potentially become a complementary alternative to System-on-Chip, thus providing a balanced set of system-level functions between the semiconductor IC and single component package beyond the year 2007. The concurrent engineering and optimization of IC and package could overcome the fundamental IC issues presented above.

  • PDF

A Study on the Inner Defect Inspection for Semiconductor Package by ESPI (ESPI를 이용한 반도체 패키지 내부결함 검사에 관한 연구)

  • Jung, Seung-Tack;Kim, Koung-Suk;Yang, Seung-Pil;Jung, Hyun-Chul;Lee, You-Hwang
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1442-1447
    • /
    • 2003
  • Computer is a very powerful machine which is widely using for data processing, DB construction, peripheral device control, image processing etc. Consequently, many researches and developments have progressed for high performance processing unit, and other devices. Especially, the core units such as semiconductor parts are rapidly growing so that high-integration, high-performance, microminiat turization is possible. The packaging in the semiconductor industry is very important technique to de determine the performance of the system that the semiconductor is used. In this paper, the inspection of the inner defects such as delamination, void, crack, etc. in the semiconductor packages is studied. ESPI which is a non-contact, non-destructive, and full-field inspection method is used for the inner defect inspection and its results are compared with that of C-Scan method.

  • PDF

Deep Learning-Based Defect Detection in Cu-Cu Bonding Processes

  • DaBin Na;JiMin Gu;JiMin Park;YunSeok Song;JiHun Moon;Sangyul Ha;SangJeen Hong
    • Journal of the Semiconductor & Display Technology
    • /
    • v.23 no.2
    • /
    • pp.135-142
    • /
    • 2024
  • Cu-Cu bonding, one of the key technologies in advanced packaging, enhances semiconductor chip performance, miniaturization, and energy efficiency by facilitating rapid data transfer and low power consumption. However, the quality of the interface bonding can significantly impact overall bond quality, necessitating strategies to quickly detect and classify in-process defects. This study presents a methodology for detecting defects in wafer junction areas from Scanning Acoustic Microscopy images using a ResNet-50 based deep learning model. Additionally, the use of the defect map is proposed to rapidly inspect and categorize defects occurring during the Cu-Cu bonding process, thereby improving yield and productivity in semiconductor manufacturing.

  • PDF