Browse > Article
http://dx.doi.org/10.6117/kmeps.2018.25.4.009

Transient Liquid Phase Diffusion Bonding Technology for Power Semiconductor Packaging  

Lee, Jeong-Hyun (Department of Materials Science and Engineering, University of Seoul)
Jung, Do-hyun (Lightweight Materials Technology Center, Gyeongbuk Technopark)
Jung, Jae-Pil (Department of Materials Science and Engineering, University of Seoul)
Publication Information
Journal of the Microelectronics and Packaging Society / v.25, no.4, 2018 , pp. 9-15 More about this Journal
Abstract
This paper shows the principles and characteristics of the transient liquid phase (TLP) bonding technology for power modules packaging. The power module is semiconductor parts that change and manage power entering electronic devices, and demand is increasing due to the advent of the fourth industrial revolution. Higher operation temperatures and increasing current density are important for the performance of power modules. Conventional power modules using Si chip have reached the limit of theoretical performance development. In addition, their efficiency is reduced at high temperature because of the low properties of Si. Therefore, Si is changed to silicon carbide (SiC) and gallium nitride (GaN). Various methods of bonding have been studied, like Ag sintering and Sn-Au solder, to keep up with the development of chips, one of which is TLP bonding. TLP bonding has the advantages in price and junction temperature over other technologies. In this paper, TLP bonding using various materials and methods is introduced. In addition, new TLP technologies that are combined with other technologies such as metal powder mixing and ultrasonic technology are also reviewed.
Keywords
Transient liquid phase bonding; Power module; High temperature; SiC; Solder;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Z. Liang, "Status and trend of automotive power packaging", Proc. 24th International Symposium on Power Semiconductor Devices and ICs (ISPSD), Bruges, 325, IEEE Power Elec tronics Society (PELS) (2012).
2 R. John, O. Vermesan, and R. Bayerer, "High temperature power electronics IGBT modules for electrical and hybrid vehicles", Proc. International Conference on High Tempera ture Electronics (HiTEC), Oxford, 199, International Microelectronics Assembly and Packaging Society (iMAPS) (2009).
3 H. S. Chin, K. Y. Cheong and A. B. Ismail, "A review on die attach materials for SiC-based high-temperature power devices", Met. Mater. Trans. B, 41, 824 (2010).   DOI
4 Y. Takaku, I. Ohnuma, Y. Yamada, Y. Yagi, Y. Nishibe, Y. Sutou, R. Kainuma, and K. Ishida, "Bi-base composite solders for mounting power semiconductor devices", J. Jap. Inst. Electron. Packga., 11, 141 (2008).   DOI
5 J. W. Yoon, J. H. Back, and S. B. Jung, "Effect of surface finish metallization on mechanical strength of Ag sintered joint", Microelectron. Eng., 198, 15 (2018).   DOI
6 B. S. Lee and J. W. Yoon, "Die-attach for power devices using the Ag sintering process: Interfacial microstructure and mechanical strength", Met. Mater. Int., 23, 958 (2017).   DOI
7 S. C. Fu, M. Zhao, H. Shan, and W. Li, "Fabrication of largearea interconnects by sintering of micron Ag paste", Mater. Lett., 226, 26 (2018).   DOI
8 T. Fan, H. Zhang, P. Shang, C. Li, C. Chen, J. Wang, Z. Liu, H. Zhang, and K. Suganuma, "Effect of electroplated Au layer on bonding performance of Ag pastes", J. Alloys. Compd., 731, 1280 (2018).   DOI
9 H. Shao, A. Wu, Y. Bao, Y. Zhao, G. Zou, and L. Liu, "Microstructure evolution and mechanical properties of Cu/Sn/Ag TLP-bonded joint during thermal aging", Mater. Charact., 144, 469 (2018).   DOI
10 W. Suh, H. S. Jung, Y. H. Lee, and S. H. Choa, "Heat dissipation technology of IGBT module package", J. Microelectron. Packag. Soc., 21(1), 7 (2014).   DOI
11 A. HassanFathabadi, "Novel battery/photovoltaic hybrid power source for plug-in hybrid electric vehicles", Solar. Energy., 159, 243 (2018).   DOI
12 J. P. Jung and C. S. Kang, "Liquid metal formation on Ni/B/Ni diffusion bonded joint -Liquid phase diffusion bonding using B as an insert material-", J. Kor. Inst. Met. Mater., 33, 1302 (1995).
13 J. W. Yoon and B. S. Lee, "Sequential interfacial reactions of Au/In/Au transient liquid phase-bonded joints for power electronics applications", Thin. Solid. Films., 660, 618 (2018).   DOI
14 G. O. Cook III and C. D. Sorensen, "Overview of transient liquid phase and partial transient liquid phase bonding", J. Mater. Sci., 46, 5305 (2011).   DOI
15 J. F. Lynch, L. Feinstein, and R. A. Huggins, "Brazing by the. Diffusion Controlled Formation of a Liquid Intermediate. Phase", Weld. J., 38, 85 (1959).
16 T. C. Illingworth, I. O. Golosnoy, V. Gergely, and T. W. Clyne, "Numerical modelling of transient liquid phase bonding and other diffusion controlled phase changes", J. Mat. Sci., 40, 2505 (2005).   DOI
17 M. S. Park, S. L. Gibbons, and R. Arroyave, "Phase-field simulations of intermetallic compound growth in Cu/Sn/Cu sandwich structure under transient liquid phase bonding conditions", Acta Mater., 60, 6278, (2012).   DOI
18 J. P. Jung, C. D. Lee, and C. S. Kang, "A study on the melting induced diffusion bonding of 304 stainless steel", J. Kor. Inst. Met. Mater., 31, 323 (1993).
19 A. S. Khaja, C. Kaestle, A. Reinhardt, and J. Franke, "Optimized thin-film diffusion soldering for power-electronics production", Proc. 36th International Spring Seminar on Electronics Technology, Alba Iulia, Romania, 11 (2013).
20 B. Gollas, J. H. Albering, K. Schmut, V. Pointner, R. Herber, and J. Etzkorn, "Thin layer in situ XRD of electrodeposited Ag/Sn and Ag/In for low-temperature isothermal diffusion soldering", Intermetallics, 16, 962 (2008).   DOI
21 H. Greve, L.Y. Chen, I. Fox, and F.P. McCluskey, "Transient liquid phase sintered attach for power electronics", Proc. 63rd Electronic Components & Technology Conference, Las Vegas, 435, IEEE (2013).
22 C. Ehrhardt, M. Hutter, H. Oppermann, and K. D. Lang, "A lead free joining technology for high temperature interconnects using transient liquid phase soldering (TLPS)", Proc. 64th Electronic Components & Technology Conference (ECTC), Orlando, 1321, IEEE (2014).
23 C. Honrao, T. C. Huang, M. Kobayashi, N. Smet, P. M. Raj, and R. Tummala, "Accelerated SLID bonding using thin multi-layer copper-solder stack for fine-pitch interconnections", Proc. 64th Electronic Components & Technology Conference (ECTC), Orlando, 1160, IEEE (2014).
24 B. Liu, Y. Tian, J. Feng, and C. Wang, "Enhanced shear strength of Cu-Sn intermetallic interconnects with interlocking dendrites under fluxless electric current-assisted bonding process", J. Mater. Sci., 52, 1943 (2017).   DOI
25 H. Y. Zhao, J. H. Liu, Z. L. Lim Y. X. Zhao, H. W. Niu, X. G. Song, and H. J. Dong, Non-interfacial growth of Cu3Sn in Cu/Sn/Cu joints during ultrasonic-assisted transient liquid phase soldering process", Mater. Lett., 186, 283 (2017).   DOI
26 T. Hu, H. Chen, and M. Li, "Die attach materials with high remelting temperatures created by bonding Cu@Sn microparticles at lower temperatures", Mater. Des., 180, 383 (2016).
27 S. W. Yoon, M. D. Glover, and K. Shiozaki, "Nickel-Tin transient liquid phase bonding toward high-temperature operational power electronics in electrified vehicles", IEEE. Trans. Power. Elcetron., 28, 2448 (2013).   DOI
28 N. Y. A. Shammas, "Present problems of power module packaging technology", Microelectron. Reliab., 43, 519 (2003).   DOI
29 N. S. Nobeen, T. Imade, B. H. Lee, E. J. R. Phua, C. C. Wong, and C. L. Gan, "Transient liquid phase (TLP) bonding using Sn/Ag multilayers for high temperature applications", Proc. 15th Electronics Packaging Technology Conference (EPTC), Singapore, 647, IEEE (2013).
30 H. Ji, M. Li, S. Ma, and M. Li, "Ni3Sn4-composed die bonded interface rapidly formed by ultrasonic-assisted soldering of Sn/Ni solder paste for high-temperature power device packaging", Mater. Des., 108, 590 (2016).   DOI
31 A. A. Bajwa and J. Wilde, "Reliability modeling of Sn-Ag transient liquid phase die-bonds for high-power SiC devices", Microelectron. Reliab., 60, 116 (2016).   DOI
32 T. A. Tollefsen, A. Larsson, O. M Lovvik, and K. Aasmundtveti, "Au-Sn SLID bonding-properties and possibilities", Metallurgical and Materials Transactions B, 43B, 397 (2012).
33 H. Shao, A. Wu, Y. Bao, Y. Zhao, and G. Zou, "Interfacial reaction and mechanical properties for Cu/Sn/Ag system low temperature transient liquid phase bonding", Mater. Electron., 27, 4839 (2016).   DOI
34 O. Mokhtari and H. Nishikawa, "The shear strength of transient liquid phase bonded Sn-Bi solder joint with added Cu particles", Adv. Powder. Technol., 27, 1000 (2016).   DOI
35 X. Lu, S. He, and H. Nishikawa, "Thermally stable Cu3Sn/Cu composite joint for high-temperature power device", Scr. Mater., 110, 101 (2016).   DOI
36 H. Ji, Y. Qiao, and M. Li, "Rapid formation of intermetallic joints through ultrasonic-assisted die bonding with Sn-0.7Cu solder for high temperature packaging application", Scripta. Materialia., 110, 19 (2016).   DOI
37 T. L. Yang, T. Aoki, K. Matsumoto, K. Toriyama, A. Horibe, H. Mori, Y. Orii, J. Y. Wu, and C. R. Kao, "Full intermetallic joints for chip stacking by using thermal gradient bonding", Acta. Materialia., 113, 90 (2016).   DOI
38 D. H. Jung, M. H. Roh, J. H. Lee, K. H. Kim, and J. P. Jung, "Transient Liquid Phase (TLP) Bonding of Device for High Temperature Operation", J. Microelectron. Packag. Soc., 24(1), 17 (2017).   DOI
39 A. A. Shirzadi and E. R. Wallach, "Temperature gradient transient liquid phase diffusion bonding: a new method for joining advanced materials", Science and Technology of Welding and Joining, 2, 89 (1997)   DOI