• Title/Summary/Keyword: Semiconductor EMC

Search Result 40, Processing Time 0.029 seconds

Thermophysical Properties of Epoxy Molding Compound for Microelectronic Packaging (반도체 패키지 EMC의 열물성 연구)

  • 이상현;도중광;송현훈
    • Journal of the Semiconductor & Display Technology
    • /
    • v.3 no.4
    • /
    • pp.33-37
    • /
    • 2004
  • As the high speed and high integration of semiconductor devices and the generation of heat increases resulted in the effective heat dissipation influences on the performance and lifetime of semiconductor devices. The heat resistance or heat spread function of EMC(epoxy molding compound) which protects these devices became one of very important factors in the evaluation of semiconductor chips. Recently, silica, alumina, AlN(aluminum nitride) powders are widely used as the fillers of EMC. The filler loading in encapsulants was high up to about 80 vol%. A high loading of filler was improved low water absorption, low stress, high strength, better flowability and high thermal conductivity. In this study, the thermal properties were investigated through thermal, mechanical and microstructure. Thermophysical properties were investigated by laser flash and differential scanning calorimeter(DSC). For detailed inspection of materials, the samples were examined by SEM.

  • PDF

Fabrication of Silica Nanoparticles by Recycling EMC Waste from Semiconductor Molding Process and Its Application to CMP Slurry (반도체 몰딩 공정에서 발생하는 EMC 폐기물의 재활용을 통한 실리카 나노입자의 제조 및 반도체용 CMP 슬러리로의 응용)

  • Ha-Yeong Kim;Yeon-Ryong Chu;Gyu-Sik Park;Jisu Lim;Chang-Min Yoon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.32 no.1
    • /
    • pp.21-29
    • /
    • 2024
  • In this study, EMC(Epoxy molding compound) waste from the semiconductor molding process is recycled and synthesized into silica nanoparticles, which are then applied as abrasive materials contains CMP(Chemical mechanical polishing) slurry. Specifically, silanol precursor is extracted from EMC waste according to the ultra-sonication method, which provides heat and energy, using ammonia solution as an etchant. By employing as-extracted silanol via a facile sol-gel process, uniform silica nanoparticles(e-SiO2, experimentally synthesized SiO2) with a size of ca. 100nm are successfully synthesized. Through physical and chemical analysis, it was confirmed that e-SiO2 has similar properties compared to commercially available SiO2(c-SiO2, commercially SiO2). For practical CMP applications, CMP slurry is prepared using e-SiO2 as an abrasive and tested by polishing a semiconductor chip. As a result, the scratches that are roughly on the surface of the chip are successfully removed and turned into a smooth surface. Hence, the results present a recycling method of EMC waste into silica nanoparticles and the application to high-quality CMP slurry for the polishing process in semiconductor packaging.

Measurement of effective cure shrinkage of EMC using dielectric sensor and FBG sensor (유전 센서 및 광섬유 센서를 이용한 EMC 유효 경화 수축 측정)

  • Baek, Jeong-hyeon;Park, Dong-woon;Kim, Hak-sung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.29 no.4
    • /
    • pp.83-87
    • /
    • 2022
  • Recently, as the thickness of the semiconductor package becomes thinner, warpage has become a major issue. Since the warpage is caused by differences in material properties between package components, it is essential to precisely evaluate the material properties of the EMC(Epoxy molding compound), one of the main components, to predict the warpage accurately. Especially, the cure shrinkage of the EMC is generated during the curing process, and among them, the effective cure shrinkage that occurs after the gelation point is a key factor in warpage. In this study, the gelation point of the EMC was defined from the dissipation factor measured using the dielectric sensor during the curing process similar with actual semiconductor package. In addition, DSC (Differential scanning calorimetry) test and rheometer test were conducted to analyze the dielectrometry measurement. As a result, the dielectrometry was verified to be an effective method for monitoring the curing status of the EMC. Simultaneously, the strain transition of the EMC during the curing process was measured using the FBG (Fiber Bragg grating) sensor. From these results, the effective cure shrinkage of the EMC during the curing process was measured.

A Study on the design of separation force measuring system for improvement of semiconductor productivity

  • Park, Kun-Jong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.10
    • /
    • pp.1-7
    • /
    • 2017
  • In this paper, the separation force measuring system is developed. The separation force aries due to adhesive strength between semiconductor epoxy molding compound(EMC) and the metal plate in semiconductor formed plate. In general, when removing the metal plate in semiconductor formed plate from semiconductor epoxy molding compound, excessive strength can result in a increase in semiconductor defect rates, or conversely, if too little force is exerted on the metal plate in semiconductor formed plate, the semiconductor production rates can decrease. In this study, the design criteria for the selection of the AC servo motor, the role of the ball screw, the relationship between the load cell and the ball screw, and the rate of deceleration are given. In addition, minimizing the reject rate of semiconductors and maximizing the semiconductor production rate are achieved through the standardization of the collected separation force data measured by the proposed system.

Synthesis of LiDAR-reflective Hollow-structured Black Materials and Recycling of Their Etched Waste for Semiconductor Epoxy Molding Compound (라이다 반사형 중공구조 검은색 물질의 개발 및 코어 에칭 폐액 재활용을 통한 반도체용 에폭시 몰딩 컴파운드 응용)

  • Ha-Yeong Kim;Min Jeong Kim;Jiwon Kim;Suk Jekal;Seon-Young Park;Jong Moon Jung;Chang-Min Yoon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.31 no.1
    • /
    • pp.5-14
    • /
    • 2023
  • In this study, LiDAR-reflective black hollow-structured silica/titania(B-HST) materials are successfully synthesized by employing the NaBH4 reduction and etching method on silica/titania core/shell(STCS) materials, which also effectively enhance near-infrared(NIR) reflectance. Moreover, core-etched supernatant solutions are collected and recycled for the synthesis of extracted silica(e-SiO2) process, which successfully applies as filler materials for semiconductor epoxy molding compound(EMC). In detail, B-HST materials, fabricated by the sequential experimental steps of sol-gel, reduction, and sonication-mediated etching method, manifest blackness(L*) of 13.2 similar to black paint and excellent NIR reflectance(31.1%). Consequently, B-HST materials are successfully prepared as LiDAR-reflective black materials. Additionally, core-etched supernatant solution with silanol precursors are employed for synthesis of homogeneous silica filler materials via sol-gel method. As-synthesized silica fillers are incorporated with epoxy resin and carbon black for the preparation of semiconductor EMC. Experimentally synthesized EMC exhibits comparable mechanical-chemical properties to commercial EMC. Conclusively, this study successfully proposes designing procedure and practical experimental method for simultaneously synthesizing the NIR-reflective black materials for self-driving vehicles and EMC materials for semiconductors, which are materials suitable for the industrial 4.0 era, and presented their applicability in future industries.

A Study on the EMC Characteristics of Bare PCB for Reliability of High-Multilayer PCB (고다층 보드 신뢰성 확보를 위한 베어보드 EMC 특성 연구)

  • Jin Sung Park;Kihyun Kim;Kyoung Min Kim;Sung Yong Kim
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.1
    • /
    • pp.94-98
    • /
    • 2023
  • In the case of high-speed data transmission on high multilayer boards, signal coherence is a problem, especially due to the via hole, and a solution to improve return loss or insertion loss by applying a back drill to the via hole is being proposed. In this paper, Near-Field Electromagnetic measurements were made on a high multilayer board to determine how the presence or absence of back drill affects signal consistency. For this purpose, we used a signal generator, spectrum analyzer, and EMC scanner on a test board to determine if it is possible to distinguish between areas with and without back drill in the via holes of the stubs on the board. Also, we analyzed the measured value of S11, S21 and EMC etc. for how much it improves the signal attenuation of the stub with back drill. Through this, we knew that less electromagnetic waves are generated the stub via with back drill. At future research, we will analyze how much it improves the signal loss and electromagnetic waves due to the depth of back drill.

  • PDF

Finite Element Analysis of an EMC Module for Selecting Epoxy (적합한 Epoxy 선정을 위한 EMC 모듈의 유한요소해석)

  • Lee, Joon-Seong;Hong, Hee-Rok;Jo, Gye-Hyeon;Park, Dong-Keun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.11
    • /
    • pp.6419-6424
    • /
    • 2014
  • The use of the PMP (Protection Module Package) was proposed as a solution for the shorter battery lifetime. The PMP means that a protection circuit consists of a semiconductor single. In this study, basic research was carried out to select a suitable epoxy material of the EMC module through finite element analysis. First, the stress on the external force was compared by the flexural strength analysis. In the following thermal analysis, the temperature change of the EMC module and the internal part was compared using the calculated heating value. Finally, the filling ratio was compared with the injection of the melting epoxy in the EMC module.

Investigation of Adhesion Mechanism at the Metal-Organic Interface Modified by Plasma - Part I

  • Sun, Yong-Bin
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2002.11a
    • /
    • pp.123-126
    • /
    • 2002
  • For the mold die sticking mechanism, the major explanation is that EMC filler of silica wears die surface roughened, which results in increase of adhesion strength. As big differences in experimental results from semiconductor manufacturers are dependent on EMC models, however, chemisorptions or acid-base interaction is apt to be also functioning as major mechanisms. In this investigation, the plasma source ion implantation (PSII) using $O_2$, $N_2$, and $CF_4$ modifies sample surface to form a new dense layer and improve surface hardness, and change metal surface condition from hydrophilic to hydrophobic and vice versa. Through surface energy quantification by measuring contact angle and surface ion coupling state analysis by Auger, major governing mechanism for sticking issue was figured out to be a complex of mechanical and chemical factors.

  • PDF

Studies on Molding Conditions and Physical Properties of EMC(Epoxy Molding Compounds) fiiled with Crystalline SiO2 for Microelectronic Encapsulation (결정성 SiO2 충진 EMC(Epoxy Molding Compounds)봉지재의 성형조건 및 물성에 관한 연구)

  • Kim, Wonho;Bae, Jong-Woo;Kang, Ho-young;Lee, Moo-Jung;Choi, II-Dong
    • Applied Chemistry for Engineering
    • /
    • v.8 no.3
    • /
    • pp.533-542
    • /
    • 1997
  • Due to the trends of faster and denser circuit design, dielectric properties of packaging materials for semiconductor will give a greater influence on performance and reliability. Also as chip becomes more densified, thermal dissipation becomes a critical reliability issue. Consequently, four important properties for manufacturing semiconductor packaging materials are low values of dielectric constant, high values of thermal conductivity, relatively low values of thermal expansion coefficient and low cost. Thus, in this study, to achieve increased performance of EMC, crystalline silica was selected as the filler for epoxy matrix. As a result, when the volume percent of crystal silica was 60~70%, good properties as packaging materials for semiconductor were achieved. In addition, overall molding condition of EMC in this experiment was established.

  • PDF

Development of Curing Process for EMC Encapsulation of Ultra-thin Semiconductor Package (초박형 반도체 패키지의 EMC encapsulation을 위한 경화 공정 개발)

  • Park, Seong Yeon;On, Seung Yoon;Kim, Seong Su
    • Composites Research
    • /
    • v.34 no.1
    • /
    • pp.47-50
    • /
    • 2021
  • In this paper, the Curing process for Epoxy Molding Compound (EMC) Package was developed by comparing the performance of the EMC/Cu Bi-layer package manufactured by the conventional Hot Press process system and Carbon Nanotubes (CNT) Heater process system of the surface heating system. The viscosity of EMC was measured by using a rheometer for the curing cycle of the CNT Heater. In the EMC/Cu Bi-layer Package manufactured through the two process methods by mentioned above, the voids inside the EMC was analyzed using an optical microscope. In addition, the interfacial void and warpage of the EMC/Cu Bi-layer Package were analyzed through C-Scanning Acoustic Microscope and 3D-Digital Image Correlation. According to these experimental results, it was confirmed that there was neither void in the EMC interior nor difference in the warpage at room temperature, the zero-warpage temperature and the change in warpage.