DOI QR코드

DOI QR Code

Synthesis of LiDAR-reflective Hollow-structured Black Materials and Recycling of Their Etched Waste for Semiconductor Epoxy Molding Compound

라이다 반사형 중공구조 검은색 물질의 개발 및 코어 에칭 폐액 재활용을 통한 반도체용 에폭시 몰딩 컴파운드 응용

  • Ha-Yeong Kim (Department of Chemical and Biological Engineering, Hanbat National University) ;
  • Min Jeong Kim (Department of Chemical and Biological Engineering, Hanbat National University) ;
  • Jiwon Kim (Department of Chemical and Biological Engineering, Hanbat National University) ;
  • Suk Jekal (Department of Chemical and Biological Engineering, Hanbat National University) ;
  • Seon-Young Park (Xentech Company) ;
  • Jong Moon Jung (Xentech Company) ;
  • Chang-Min Yoon (Department of Chemical and Biological Engineering, Hanbat National University)
  • Received : 2022.12.19
  • Accepted : 2022.12.25
  • Published : 2023.03.30

Abstract

In this study, LiDAR-reflective black hollow-structured silica/titania(B-HST) materials are successfully synthesized by employing the NaBH4 reduction and etching method on silica/titania core/shell(STCS) materials, which also effectively enhance near-infrared(NIR) reflectance. Moreover, core-etched supernatant solutions are collected and recycled for the synthesis of extracted silica(e-SiO2) process, which successfully applies as filler materials for semiconductor epoxy molding compound(EMC). In detail, B-HST materials, fabricated by the sequential experimental steps of sol-gel, reduction, and sonication-mediated etching method, manifest blackness(L*) of 13.2 similar to black paint and excellent NIR reflectance(31.1%). Consequently, B-HST materials are successfully prepared as LiDAR-reflective black materials. Additionally, core-etched supernatant solution with silanol precursors are employed for synthesis of homogeneous silica filler materials via sol-gel method. As-synthesized silica fillers are incorporated with epoxy resin and carbon black for the preparation of semiconductor EMC. Experimentally synthesized EMC exhibits comparable mechanical-chemical properties to commercial EMC. Conclusively, this study successfully proposes designing procedure and practical experimental method for simultaneously synthesizing the NIR-reflective black materials for self-driving vehicles and EMC materials for semiconductors, which are materials suitable for the industrial 4.0 era, and presented their applicability in future industries.

연구에서는 실리카/티타니아 코어/쉘(STCS) 물질을 기반으로 환원 및 에칭을 통해 근적외선 반사율을 향상시킬 수 있는 라이다 반사형 중공구조 검은색(B-HST) 물질을 제조하였다. 또한, 에칭 폐액을 수거 및 재활용하여 합성한 실리카(e-SiO2) 물질을 반도체 에폭시 몰딩 컴파운드용(EMC) 필러 소재로서 응용하였다. 상세히는, 연속적인 졸-겔법, 환원법 및 초음파법을 통해 제조한 B-HST 물질은 높은 NIR 반사율(31.1%)과 실제 검은색 페인트와 유사한 명도(L*=13.2)를 나타내었으며, 이를 통해 성공적으로 라이다에 인식될 수 있는 소재가 제조되었음을 확인하였다. 추가적으로, B-HST 물질의 합성 과정에서 코어 실리카를 에칭하여 추출한 실라놀 전구체를 포함하는 에칭 폐액을 수거한 뒤, 졸-겔법을 통해 균일한 필러용 실리카로 합성하였으며, 에폭시 고분자 및 카본블랙과의 혼합을 통해 반도체 패키지용 소재인 EMC로 제조하였다. 실험으로 제조된 EMC는 상용화된 EMC 제품과 유사한 물리적-화학적 특성을 나타냄을 확인할 수 있었다. 본 연구 결과를 통해 물질의 합성과 효과적인 재활용법의 설계를 통하여 4차 산업시대에 부합하는 고부가 가치 소재들인 자율주행차 차량용 검은색 물질과 반도체용 EMC 물질들을 성공적으로 제조하고 미래 산업에서의 응용 가능성에 대해 제시하였다.

Keywords

Acknowledgement

본 연구는 2022년도 중소벤처기업부의 기술개발사업 지원에 의한 연구임 (S3247610) This work was supported by the Technology development Program(S3247610) funded by the Ministry of SMEs and Startups(MSS, Korea)

References

  1. Li, Y. and Javier, I.-G., "LiDAR for Autonomous Driving: The Principles, Challenges, and Trends for Automotive LiDAR and Perception Systems", IEEE Signal Processing Magazine, 37(4), pp. 50~61. (2020). 
  2. Lee, H. J., Jung, K. Y. and Kim, Y.-S., "Nanostructured Fe2O3/TiO2 composite particles with enhanced NIR reflectance for application to LiDAR detectable cool pigment", RSC Advances, 11(28), pp. 16834~16840. (2021).  https://doi.org/10.1039/D1RA02614C
  3. Wu, S., Reddy, G. K. and Banerjee, D., "Pitch-Black Nanostructure Copper oxides as an Alternative to Carbon Black for Autonomous Environments", Advanced Intelligent Systems, 3(9), p. 2100049. (2021). 
  4. Vogt, M., Rips, A. and Emmelmann, C., "Comparison of IPad Pro's LiDAR and TrueDepth Capabilities with an Industrial 3D Scanning Solution", Technologies, 9(25), p. 178806. (2021). 
  5. Bakker, I., Van Der Voordt, T., Vink, P., De Boon, J. and Bazley, C., "Color preferences for different topics in connection to personal characteristics", Color Research & Application, 40(1), pp. 62~71. (2013). 
  6. Kim, J. H., Patil, V., Chun, J. M., Park, H. S. and Seo, S. W., "Design of near Infrared Reflective Effective Pigment for LiDAR Detectable Paint", MRS Advances, 5(11), pp. 515~522. 
  7. Lim, T., Bae, S. H., Yu, S. H., Baek, K.-Y. and Cho, S., "Near-Infrared Reflective Dark-Tone Bilayer System for LiDAR-Based Autonomous Vehicles", Macromolecular Research, 30(5), pp. 342~347. (2022).  https://doi.org/10.1007/s13233-022-0037-5
  8. Sangwong, N., Suwan, M. and Supothina, S., "Effect of calcination temperature and dolomite or Al2O3 doping on properties of NIR-reflective CoFe2O4 black pigment", Materialstoday: Proceedings, 17, pp. 1595~1601. (2017).  https://doi.org/10.1016/j.matpr.2019.06.187
  9. Moriomoto, T., Oka, R., Minagawa, K. and Masui, T., "Novel near-infrared reflective black inorganic pigment based on cerium vanadate", RSC Advances, 12, pp. 16570~16575. (2022).  https://doi.org/10.1039/D2RA02483G
  10. Liu, L., Han, A., Ye, M. and Feng, W., "The Evaluation of Thermal Performance of Cool Coatings Colored with High Near-Infrared Reflective Nano-brown Inorganic Pigments: Magnesium Doped ZnFe2O4 Compounds", Solar Energy, 113, pp. 48~56. (2015).  https://doi.org/10.1016/j.solener.2014.12.034
  11. Mighani, M. and Dadashzadeh, G., "Broadband RCS Reduction Using a Novel Double Layer Chessboard AMC Surface", Electonics Letters, 52(14), pp. 1253~1255. (2016).  https://doi.org/10.1049/el.2016.1214
  12. Parham, S., Wicaksono, D. H. B., Bagherbaigi, S., Lee, S. L. and Nur, H., "Antimicrobial Treatment of Different Metal Oxide Nanoparticles: A Critical Review", Journal of The Chinese Chemical Society, 63(4), pp. 385~393. (2016).  https://doi.org/10.1002/jccs.201500446
  13. Jekal, S., Kim, J., Kim, D.-H., Nor, J., Kim, M.-J., Kim, H.-Y., Kim, M.-S., Oh, W.-C. and Yoon, C.-M., "Synthesis of LiDAR-Detectable True Black Core/Shell Nanomaterial and Its Practical Use in LiDAR Applications", nanomaterials, 12(20), p. 3689. (2022). 
  14. Linec, M. and Music, B., "The Effects of Silica-Based Fillers on the Properties of Epoxy Molding Compounds", Materials, 12(11), p. 1811. (2019). 
  15. Ahn, Y., Yoon, J.-Y., Baek, C.-W. and Kim, Y.-K., "Chemical mechanical polishing by colloidal siica-based slurry for micro-scratch reduction", Wear, 257(7-8), pp. 785~789. (2004).  https://doi.org/10.1016/j.wear.2004.03.020
  16. Andronic, L. and Enesca, A., "Black TiO2 Synthesis by Chemical Reduction Methods for Photocatalysis Applications", Frontiers in Chemistry, 8, p. 565489. (2020). 
  17. Chen, J. and Lu, H., "Generalized Laws of Reflection and Refraction from Real Valued Boundary Conditions", Optics Communications, 284, pp. 3802~3807. (2011).  https://doi.org/10.1016/j.optcom.2011.04.022
  18. Luhn, S. and Hentschel, M., "Analytical Fresnel Laws for Curved Dielectric Interfaces", Journal of Optics, 22, p. 015605. (2020). 
  19. Yoon, J., Lee, J. H., Lee, J. B. and Lee, J. H., "Highly Scattering Hierarchical Porous Polymer Microspheres with a High-Refractive Index Inorganic Surface for a Soft-Focus Effect", Polymers, 1 2, pp. 1 ~13. (2020). 
  20. Wang, W., Gu, B., Liang, L. and Hamilton, W. A., "Fabrication of Near-Infrared Photonic Crystals Using Highly-Monodispersed Submicrometer SiO2 Spheres", The Journal of Physical Chemistry B, 107(44), pp. 12113~12117. (2003).  https://doi.org/10.1021/jp034161b
  21. Kim, D. H., Kim, J., Jekal, S., Kim, M. J., Kim, H.-Y., Kim, M. S., Kim, S.-C., Park, S.-Y. and Yoon, C.-M., "Synthesis of Sludge Waste-derived Semiconductor Grade Uniform Colloidal Silica Nanoparticles and Their CMP Application", Journal of the Korea Organic Resources Recycling Association, 30(3), pp. 5~12. (2022). 
  22. Iijima, M., Tsukadam, M. and Kamiya, H., "Effect of particle size on surface modification of silica nanoparticles by using silane coupling agents and their dispersion stability in methylethylketone", Journal of Colloid and Interface Science, 307(2), pp. 418~424. (2007).  https://doi.org/10.1016/j.jcis.2006.11.044
  23. Yoon, C.-M., Ryu, J., Yun, J., Kim, Y. K. and Jang, J., "Synthesis of Hierarchical Silica/Titania Hollow Nanoparticles and Their Enhanced Electroresponsive Activity", ACS Applied Materials & Interfaces, 10(7), pp. 6570~6579. (2018).  https://doi.org/10.1021/acsami.7b18895
  24. Kim, G. H., Hwang, S. W., Kang, D. H., Jung, B. N., Lee, M. J., Shim, J. K. and Seo, K. H., "Controllable synthesis of silica nanoparticle size and packing efficiency onto PVP-functionalized PMMA via a sol-gel method", Journal of Polymer Science, 58(5), pp. 662~672. (2020).  https://doi.org/10.1002/pol.20190115
  25. Jeevanandam, P., Mulukutla, R. S., Phillips, M., Chaudhuri, S., Erickson L. E. and Klabunder, K.J., "Near infrared reflectance properties of metal oxide nanoparticles", Journal of Physical Chemistry C, 111(5), pp. 1912~1918. (2007).  https://doi.org/10.1021/jp066363o
  26. Zhang, M., Song, X., Sun, X., Wang, Z., Zhao, Q., Li, Z., Ji, H. and Xu, X., "Patterns of color formation in different fibers during development of colored cotton (Gossypium hirsutum L.) cultivars", Australian Journal of Crop Scienece, 5(13), pp. 1796~1800. (2011). 
  27. Kuru, K., "Optimization and enhancement of H&E stained microscopical images by applying bilinear interpolation method on lab color mode", Theoretical Biology and Medical Modelling, 11(1), p. 9. (2014). 
  28. Liu, W., Ji, J., Chen, H. and Ye, C., "Optimal color design of psychological counseling room by design of experiments and response surface methodology", PLoS ONE, 9(3), p. e90646. (2014). 
  29. Ly, B. C. K., Dyer, E. B., Feig, J. L., Chien, A. L. and Del Bino, S., "Research Techniques Made Simple: Cutaneous Colorimetry: A Reliable Technique for Objective Skin Color Measurement", J. Investig. Dermatol, 140(1), pp. 3~12.el. (2020).  https://doi.org/10.1016/j.jid.2019.11.003
  30. Delgado-Gonzalez, M. J., Carmona-Jimenez, Y., Rodriguez-Dodero, M. C. and Garcia-Moreno, M. V., "Color Space Mathematical Modeling Using Microsoft Excel", Journal of Chemical Education, 95(10), pp. 1885~1889. (2018).  https://doi.org/10.1021/acs.jchemed.7b00681
  31. Herth, E., Zeggari, R., Rauch, J.-Y., Fabien R.-M. and Boireau, W., "Investigation of amorphous SiOx layer on gold surface for Surface Plasmon Resonance measurements", Microelectron. Eng, 163, pp. 43~48. (2016).  https://doi.org/10.1016/j.mee.2016.04.014