• Title/Summary/Keyword: Semi-symmetric connection

Search Result 67, Processing Time 0.02 seconds

LIGHTLIKE HYPERSURFACES OF AN INDEFINITE TRANS-SASAKIAN MANIFOLD WITH AN (ℓ, m)-TYPE CONNECTION

  • Jin, Dae Ho
    • Journal of the Korean Mathematical Society
    • /
    • v.55 no.5
    • /
    • pp.1075-1089
    • /
    • 2018
  • We define a new connection on semi-Riemannian manifolds, which is a non-symmetric and non-metric connection. We say that this connection is an (${\ell}$, m)-type connection. Semi-symmetric non-metric connection and non-metric ${\phi}$-symmetric connection are two important examples of this connection such that (${\ell}$, m) = (1, 0) and (${\ell}$, m) = (0, 1), respectively. In this paper, we study lightlike hypersurfaces of an indefinite trans-Sasakian manifold with an (${\ell}$, m)-type connection.

CERTAIN CURVATURE CONDITIONS IN KENMOTSU MANIFOLDS

  • Haseeb, Abdul
    • Honam Mathematical Journal
    • /
    • v.42 no.2
    • /
    • pp.331-344
    • /
    • 2020
  • The objective of the present paper is to study certain curvature conditions in Kenmotsu manifolds with respect to the semi-symmetric non-metric connection. Finally, we construct an example of 5-dimensional Kenmotsu manifold with respect to the semi-symmetric non-metric connection to verify some results of the paper.

SOME NOTES ON LP-SASAKIAN MANIFOLDS WITH GENERALIZED SYMMETRIC METRIC CONNECTION

  • Bahadir, Oguzhan;Chaubey, Sudhakar K.
    • Honam Mathematical Journal
    • /
    • v.42 no.3
    • /
    • pp.461-476
    • /
    • 2020
  • The present study initially identify the generalized symmetric connections of type (α, β), which can be regarded as more generalized forms of quarter and semi-symmetric connections. The quarter and semi-symmetric connections are obtained respectively when (α, β) = (1, 0) and (α, β) = (0, 1). Taking that into account, a new generalized symmetric metric connection is attained on Lorentzian para-Sasakian manifolds. In compliance with this connection, some results are obtained through calculation of tensors belonging to Lorentzian para-Sasakian manifold involving curvature tensor, Ricci tensor and Ricci semi-symmetric manifolds. Finally, we consider CR-submanifolds admitting a generalized symmetric metric connection and prove many interesting results.

HYPERSURFACES OF ALMOST γ-PARACONTACT RIEMANNIAN MANIFOLD ENDOWED WITH SEMI-SYMMETRIC METRIC CONNECTION

  • Jun, Jae-Bok;Ahmad, Mobin
    • Bulletin of the Korean Mathematical Society
    • /
    • v.46 no.5
    • /
    • pp.895-903
    • /
    • 2009
  • We define a semi-symmetric metric connection in an almost $\gamma$-paracontact Riemannian manifold and we consider invariant, non-invariant and anti-invariant hypersurfaces of an almost $\gamma$-paracontact Riemannian manifold endowed with a semi-symmetric metric connection.

CHEN INEQUALITIES ON LIGHTLIKE HYPERSURFACES OF A LORENTZIAN MANIFOLD WITH SEMI-SYMMETRIC NON-METRIC CONNECTION

  • Poyraz, Nergiz (Onen)
    • Honam Mathematical Journal
    • /
    • v.44 no.3
    • /
    • pp.339-359
    • /
    • 2022
  • In this paper, we investigate k-Ricci curvature and k-scalar curvature on lightlike hypersurfaces of a real space form ${\tilde{M}}$(c) of constant sectional curvature c, endowed with semi-symmetric non-metric connection. Using this curvatures, we establish some inequalities for screen homothetic lightlike hypersurface of a real space form ${\tilde{M}}$(c) of constant sectional curvature c, endowed with semi-symmetric non-metric connection. Using these inequalities, we obtain some characterizations for such hypersurfaces. Considering the equality case, we obtain some results.

COMPLETE LIFTS OF A SEMI-SYMMETRIC NON-METRIC CONNECTION FROM A RIEMANNIAN MANIFOLD TO ITS TANGENT BUNDLES

  • Uday Chand De ;Mohammad Nazrul Islam Khan
    • Communications of the Korean Mathematical Society
    • /
    • v.38 no.4
    • /
    • pp.1233-1247
    • /
    • 2023
  • The aim of the present paper is to study complete lifts of a semi-symmetric non-metric connection from a Riemannian manifold to its tangent bundles. Some curvature properties of a Riemannian manifold to its tangent bundles with respect to such a connection have been investigated.

ON ALMOST r-PARACONTACT RIEMANNIAN MANIFOLD WITH A CERTAIN CONNECTION

  • Ahmad, Mobin;Haseeb, Abdul;Jun, Jae-Bok;Rahman, Shamsur
    • Communications of the Korean Mathematical Society
    • /
    • v.25 no.2
    • /
    • pp.235-243
    • /
    • 2010
  • In a Riemannian manifold, the existence of a new connection is proved. In particular cases, this connection reduces to several symmetric, semi-symmetric and quarter symmetric connections, even some of them are not introduced so far. So, in this paper, we define a quarter symmetric semi-metric connection in an almost r-paracontact Riemannian manifold and consider invariant, non-invariant and anti-invariant hypersurfaces of an almost r-paracontact Riemannian manifold with that connection.

η-Ricci Solitons in δ-Lorentzian Trans Sasakian Manifolds with a Semi-symmetric Metric Connection

  • Siddiqi, Mohd Danish
    • Kyungpook Mathematical Journal
    • /
    • v.59 no.3
    • /
    • pp.537-562
    • /
    • 2019
  • The aim of the present paper is to study the ${\delta}$-Lorentzian trans-Sasakian manifold endowed with semi-symmetric metric connections admitting ${\eta}$-Ricci Solitons and Ricci Solitons. We find expressions for the curvature tensor, the Ricci curvature tensor and the scalar curvature tensor of ${\delta}$-Lorentzian trans-Sasakian manifolds with a semisymmetric-metric connection. Also, we discuses some results on quasi-projectively flat and ${\phi}$-projectively flat manifolds endowed with a semi-symmetric-metric connection. It is shown that the manifold satisfying ${\bar{R}}.{\bar{S}}=0$, ${\bar{P}}.{\bar{S}}=0$ is an ${\eta}$-Einstein manifold. Moreover, we obtain the conditions for the ${\delta}$-Lorentzian trans-Sasakian manifolds with a semisymmetric-metric connection to be conformally flat and ${\xi}$-conformally flat.

NON-TANGENTIAL HALF LIGHTLIKE SUBMANIFOLDS OF SEMI-RIEMANNIAN MANIFOLDS WITH SEMI-SYMMETRIC NON-METRIC CONNECTIONS

  • Jin, Dae Ho
    • Journal of the Korean Mathematical Society
    • /
    • v.51 no.2
    • /
    • pp.311-323
    • /
    • 2014
  • In this paper, we construct two types of non-tangential half lightlike submanifolds of a semi-Riemannian manifold admitting a semi-symmetric non-metric connection. Our main result is to prove several characterization theorems for each types of such half lightlike submanifolds equipped with totally geodesic screen distributions.