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LIGHTLIKE HYPERSURFACES OF

AN INDEFINITE TRANS-SASAKIAN MANIFOLD WITH

AN (`, m)-TYPE CONNECTION

Dae Ho Jin

Abstract. We define a new connection on semi-Riemannian manifolds,
which is a non-symmetric and non-metric connection. We say that this

connection is an (`, m)-type connection. Semi-symmetric non-metric con-

nection and non-metric φ-symmetric connection are two important exam-
ples of this connection such that (`, m) = (1, 0) and (`, m) = (0, 1), re-

spectively. In this paper, we study lightlike hypersurfaces of an indefinite
trans-Sasakian manifold with an (`, m)-type connection.

1. Introduction

We define a new connection on semi-Riemannian manifolds (M̄, ḡ) as follow:
A linear connection ∇̄ on M̄ is called a non-symmetric non-metric connection
of type (`, m), and abbreviate it to (`, m)-type connection, if there exist two
smooth functions ` and m such that ∇̄ itself and its torsion tensor T̄ satisfy

(∇̄X̄ ḡ)(Ȳ , Z̄) = − `{θ(Ȳ )ḡ(X̄, Z̄) + θ(Z̄)ḡ(X̄, Ȳ )}(1.1)

− m{θ(Ȳ )ḡ(JX̄, Z̄) + θ(Z̄)ḡ(JX̄, Ȳ )},
T̄ (X̄, Ȳ ) = `{θ(Ȳ )X̄ − θ(X̄)Ȳ }+m{θ(Ȳ )JX̄ − θ(X̄)JȲ },(1.2)

where J is a tensor field of type (1, 1) and θ is a 1-form associated with a
smooth unit vector field ζ by θ(X̄) = ḡ(X̄, ζ). Throughout this paper, we set
(`,m) 6= (0, 0) and we denote by X̄, Ȳ and Z̄ the smooth vector fields on M̄ .

Two special cases are important for both the mathematical study and the
applications to physics: (1) In case (`, m) = (1, 0): The above connection
∇̄ becomes a semi-symmetric non-metric connection. The notion of semi-
symmetric non-metric connection on a Riemannian manifold was introduced
by Ageshe-Chafle [1,2] and later, studied by several authors [12,14]. (2) In case
(`, m) = (0, 1): The above connection ∇̄ becomes a non-metric φ-symmetric
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connection such that φ(X̄, Ȳ ) = ḡ(JX̄, Ȳ ). The notion of the non-metric φ-
symmetric connection was introduced by Jin [11,13,15].

Furthermore, (3) in case (`, m) = (1, 0) in (1.1) and (`, m) = (0, 1) in (1.2):
The above connection ∇̄ becomes a quarter-symmetric non-metric connection.
The notion of quarter-symmetric non-metric connection was introduced by Go-
lab [7] and then, studied by Sengupta-Biswas [17] and Ahmad-Haseeb [3]. (4)
In case (`, m) = (0, 0) in (1.1) and (`, m) = (0, 1) in (1.2): The above con-
nection ∇̄ becomes a quarter-symmetric metric connection. The notion of
quarter-symmetric metric connection was introduced Yano-Imai [18]. (5) In
case (`, m) = (0, 0) in (1.1) and (`, m) = (1, 0) in (1.2): The above connection
∇̄ becomes a semi-symmetric metric connection. The notion of semi-symmetric
metric connection was introduced Hayden [8].

Remark 1.1. Denote by ∇̃ the Levi-Civita connection of a semi-Riemannian
manifold (M̄, ḡ) with respect to ḡ. By directed calculations, we see that a linear
connection ∇̄ on M̄ is an (`, m)-type connection if and only if ∇̄ satisfies

(1.3) ∇̄X̄ Ȳ = ∇̃X̄ Ȳ + θ(Ȳ ){`X̄ +mJX̄}.

The subject of study in this paper is lightlike hypersurfaces of an indefinite
trans-Sasakian manifold M = (M̄, ζ, θ, J, ḡ) endowed with an (`, m)-type con-
nection subject to the following two conditions that (1) the tensor field J and
the 1-form θ, defined by (1.1) and (1.2), are identical with the indefinite trans-
Sasakian structure tensor J and the structure 1-form θ of M̄ , respectively, and
(2) the structure vector field ζ of M̄ is tangent to M .

2. Lightlike hypersurfaces

An odd-dimensional semi-Riemannian manifold (M̄, ḡ) is called an indefinite
almost contact metric manifold, and denoted by M̄ = (M̄, J, ζ, θ, ḡ), if there
exists a set {J, ζ, θ, ḡ}, where J is a tensor field of type (1, 1), ζ is a vector
field which is called the structure vector field of M̄ , θ is a 1-form associated
with ζ and ḡ is a semi-Riemannian metric on M̄ such that

(2.1) J2X̄ = −X̄ + θ(X̄)ζ, ḡ(JX̄, JȲ ) = ḡ(X̄, Ȳ )− εθ(X̄)θ(Ȳ ), θ(ζ) = 1,

where ε = 1 or −1 according as ζ is spacelike or timelike, respectively. The set
{J, ζ, θ, ḡ} is called an indefinite almost contact metric structure of M̄ .

From (2.1), we show that

Jζ = 0, θ ◦ J = 0, θ(X̄) = εḡ(X̄, ζ), ḡ(JX̄, Ȳ ) = −ḡ(X̄, JȲ ).

In the entire discussion of this article, we shall assume that the structure
vector field ζ is a spacelike one, i.e., ε = 1, without loss of generality.

Definition. An indefinite almost contact metric manifold M̄ is said to be an
indefinite trans-Sasakian manifold if, for the Levi-Civita connection ∇̃ on M̄ ,
there exist two smooth functions α and β such that

(∇̃X̄J)Ȳ = α{ḡ(X̄, Ȳ )ζ − θ(Ȳ )X̄}+ β{ḡ(JX̄, Ȳ )ζ − θ(Ȳ )JX̄}.
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Then {J, ζ, θ, ḡ} is called an indefinite trans-Sasakian structure, of type (α, β).

The notion of indefinite trans-Sasakian manifold was introduced by Oubina
[16]. Indefinite Sasakian, Kenmotsu and cosymplectic manifolds are three im-
portant kinds of this indefinite trans-Sasakian manifold such that

α = 1, β = 0; α = 0, β = 1; α = β = 0, respectively.

By directed calculation from (1.3), (2.1) and θ(JY ) = 0, we obtain

(∇̄X̄J)Ȳ = α{ḡ(X̄, Ȳ )ζ − θ(Ȳ )X̄}+ β{ḡ(JX̄, Ȳ )ζ − θ(Ȳ )JX̄}(2.2)

− θ(Ȳ ){`JX̄ −mX̄ +mθ(X̄)ζ}.
Replacing Ȳ by ζ to (2.2) and using Jζ = 0 and θ(∇̄Xζ) = `θ(X), we obtain

(2.3) ∇̄X̄ζ = (m− α)JX̄ + (`+ β)X̄ − βθ(X̄)ζ.

Let (M, g) be a lightlike hypersurface of M̄ . Denote by F (M) the algebra of
smooth functions on M and by Γ(E) the F (M) module of smooth sections of
a vector bundle E over M . Also denote by (2.1)i the i-th equation of the three
equations in (2.1). We use same notations for any others. It is known [6] that
the normal bundle TM⊥ of M is a vector subbundle of the tangent bundle TM ,
of rank 1, and coincides with the radical distribution Rad(TM) = TM ∩TM⊥.
A complementary vector bundle S(TM) of TM⊥ in TM is non-degenerate
distribution on M , which is called a screen distribution on M , such that

TM = TM⊥ ⊕orth S(TM),

where ⊕orth denotes the orthogonal direct sum. For any null section ξ of TM⊥

on a coordinate neighborhood U ⊂ M , there exists a unique null section N of
a unique vector bundle tr(TM) in S(TM)⊥ satisfying

ḡ(ξ,N) = 1, ḡ(N,N) = ḡ(N,X) = 0, ∀X ∈ Γ(S(TM)).

We call tr(TM) and N the transversal vector bundle and the null transversal
vector field of M with respect to the screen distribution S(TM) respectively.
The tangent bundle TM̄ of M̄ is decomposed as follow:

TM̄ = TM ⊕ tr(TM) = {TM⊥ ⊕ tr(TM)} ⊕orth S(TM).

In the sequel, let X, Y, Z and W be the vector fields on M , unless otherwise
specified. Let P be the projection morphism of TM on S(TM). Then the local
Gauss and Weingartan formulae of M and S(TM) are given respectively by

∇̄XY = ∇XY +B(X,Y )N,(2.4)

∇̄XN = −A
N
X + τ(X)N,(2.5)

∇XPY = ∇∗XPY + C(X,PY )ξ,(2.6)

∇Xξ = −A∗ξX − σ(X)ξ,(2.7)

where ∇ and ∇∗ are the induced linear connections on M and S(TM), B and
C are the local second fundamental forms on M and S(TM), respectively, A

N

and A∗ξ are the shape operators, and τ and σ are 1-forms on M .
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Due to Jin [9], it is known that, for any lightlike hypersurface M of an
indefinite almost contact manifold M̄ , J(TM⊥) and J(tr(TM)) are subbundles
of S(TM), of rank 1. In the following, we shall assume that ζ is tangent to M .
Cǎlin [5] proved that if ζ is tangent to M , then it belongs to S(TM). In this
case, there exists two non-degenerate almost complex distributions Do and D
with respect to J , i.e., J(Do) = Do and J(D) = D, such that

S(TM) = J(TM⊥)⊕ J(tr(TM))⊕orth Do,

D = TM⊥ ⊕orth J(TM⊥)⊕orth Do.

In this case, the tangent bundle TM of M is decomposed as follow:

TM = D ⊕ J(tr(TM)).

Consider two null vector fields U and V and their 1-forms u and v such that

(2.8) U = −JN, V = −Jξ, u(X) = g(X,V ), v(X) = g(X,U).

Denote by S the projection morphism of TM on D. Any vector field X of M
is expressed as X = SX + u(X)U . Applying J to this form, we have

(2.9) JX = FX + u(X)N,

where F is a tensor field of type (1, 1) globally defined on M by FX = JSX.
Applying J to (2.9) and using (2.1)1 and (2.8), we have

(2.10) F 2X = −X + u(X)U + θ(X)ζ.

As u(U) = θ(ζ) = 1 and FU = Fζ = 0, (F, u, θ, U, ζ) defines an well-known
indefinite (f, g, u, v, λ) structure on M such that λ = 0 and F is called the
structure tensor field of M and U is called the structure vector field of M .

3. (`,m)-type connections

Using (1.1), (1.2), (1.3), (2.4) and (2.9), we obtain

(∇Xg)(Y,Z) = B(X,Y )η(Z) +B(X,Z)η(Y )(3.1)

− `{θ(Y )g(X,Z) + θ(Z)g(X,Y )}
− m{θ(Y )ḡ(JX,Z) + θ(Z)ḡ(JX, Y )},

T (X,Y ) = `{θ(Y )X − θ(X)Y }+m{θ(Y )FX − θ(X)FY },(3.2)

B(X,Y )−B(Y,X) = m{θ(Y )u(X)− θ(X)u(Y )},(3.3)

where T is the torsion tensor with respect to the connection ∇ on M and η is
a 1-form such that η(X) = ḡ(X,N).

Theorem 3.1. Let M be a lightlike hypersurface of an indefinite trans-Sasakian
manifold M̄ with an (`, m)-type connection such that ζ is tangent to M . Then
B is symmetric if and only if m = 0.

Proof. If m = 0, then B is symmetric by (3.3). Conversely, if B is symmetric,
then, taking X = ζ and Y = U to (3.3), we have m = 0. �
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From the fact that B(X,Y ) = ḡ(∇̄XY, ξ), we know that B is independent
of the choice of the screen distribution S(TM) and satisfies

(3.4) B(X, ξ) = 0, B(ξ,X) = 0.

The local second fundamental forms are related to their shape operators by

B(X,Y ) = g(A∗ξX,Y ) +mu(X)θ(Y ),(3.5)

C(X,PY ) = g(A
N
X,PY ) + {`η(X) +mv(X)}θ(PY ),(3.6)

ḡ(A∗ξX,N) = 0, ḡ(A
N
X,N) = 0, σ = τ.(3.7)

As S(TM) is non-degenerate, taking X = ξ to (3.5) and using (3.4)2, we get

(3.8) A∗ξξ = 0, ∇̄Xξ = −A∗ξX − τ(X)ξ,

by (2.4), (2.7), (3.4)1 and (3.7)3. Applying ∇̄X to ḡ(ζ, ξ) = 0 and ḡ(ζ,N) = 0
by turns and using (1.1), (2.3), (2.5), (3.5), (3.6) and (3.8)2, we have

g(A∗ξX, ζ) = −αu(X), B(X, ζ) = (m− α)u(X),(3.9)

g(A
N
X, ζ) = −αv(X) + βη(X),(3.10)

C(X, ζ) = (`+ β)η(X) + (m− α)v(X).

Substituting (2.9) into (2.3) and using (2.4), we have

(3.11) ∇Xζ = (m− α)FX + (`+ β)X − βθ(X)ζ.

Applying ∇̄X to (2.8) and (2.9) and using (2.2), (2.4), (2.5), (2.9), (2.10),
(3.1), (3.6), (3.8)2 and the facts that θ(V ) = θ(U) = 0, we have

B(X,U) = C(X,V ),(3.12)

∇XU = F (A
N
X) + τ(X)U − {αη(X) + βv(X)}ζ,(3.13)

∇XV = F (A∗ξX)− τ(X)V − βu(X)ζ,(3.14)

(∇XF )(Y ) = u(Y )A
N
X −B(X,Y )U(3.15)

+ {αg(X,Y ) + βḡ(JX, Y )−mθ(X)θ(Y )}ζ
+ (m− α)θ(Y )X − (`+ β)θ(Y )FX,

(∇Xu)(Y ) = −u(Y )τ(X)−B(X,FY )− (`+ β)θ(Y )u(X),(3.16)

(∇Xv)(Y ) = v(Y )τ(X)− g(A
N
X,FY )(3.17)

− (`+ β)θ(Y )v(X) + (m− α)θ(Y )η(X).

4. Some results

Definition. The structure tensor field F of M is said to be recurrent [10] if
there exists a 1-form $ on M such that

(∇XF )Y = $(X)FY.

Theorem 4.1. There exist no lightlike hypersurfaces of an indefinite trans-
Sasakian manifold with an (`,m)-type connection subject such that ζ is tangent
to M and F is recurrent.
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Proof. If M is recurrent, then, from the above definition and (3.12), we get

$(X)FY = u(Y )A
N
X −B(X,Y )U(4.1)

+ {αg(X,Y ) + βḡ(JX, Y )−mθ(X)θ(Y )}ζ
+ (m− α)θ(Y )X − (`+ β)θ(Y )FX.

Replacing Y by ξ to (4.1) and using (3.4)1 and the fact that Fξ = −V , we get

$(X)V + βu(X)ζ = 0.

Taking the scalar product with U and ζ to this equation, we obtain

$ = 0, β = 0.

As $ = 0, we see that F is parallel with respect to the connection ∇.
Taking Y = ζ to (4.1) and using (3.9)2, we get

(m− α){X − u(X)U − θ(X)ζ} = `FX.

Taking X = V to this, we get (m−α)V = `ξ. It follows that m = α and ` = 0.
Taking the scalar product with ζ to (4.1) and using (3.10)1, we get

α{g(X,Y )− θ(X)θ(Y )− v(X)u(Y )} = 0.

Taking the skew-symmetric part of this equation, we obtain

α{u(X)v(Y )− u(Y )v(X)} = 0.

Taking X = U and Y = V to this equation, we have α = 0. Therefore m = 0.
It is a contradiction to (`,m) 6= (0, 0). Thus we have our theorem. �

Corollary 4.2. There exist no lightlike hypersurfaces of an indefinite trans-
Sasakian manifold with an (`,m)-type connection subject such that ζ is tangent
to M and F is parallel with respect to the connection ∇ of M .

Definition. The structure tensor field F of M is said to be Lie recurrent [10]
if there exists a 1-form ϑ on M such that

(L
X
F )Y = ϑ(X)FY,

where L
X

denotes the Lie derivative on M with respect to X, that is,

(L
X
F )Y = [X,FY ]− F [X,Y ].

The structure tensor field F is called Lie parallel if L
X
F = 0.

Theorem 4.3. Let M be a lightlike hypersurface of an indefinite Kaehler man-
ifold M̄ with an (`,m)-type connection subject such that ζ is tangent to M and
F is Lie recurrent. Then

(1) F is Lie parallel ,
(2) the function α satisfies α = 0,
(3) the 1-form τ satisfies τ = 0, and
(4) the shape operator A∗ξ satisfies A∗ξU = A∗ξV = 0.
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Proof. (1) Using the above definition, (2.10), (3.2) and (3.15), we get

ϑ(X)FY = −∇FYX + F∇YX(4.2)

+ u(Y )A
N
X − {B(X,Y )−mθ(Y )u(X)}U

− θ(Y ){αX + βFX}+ {αg(X,Y ) + βḡ(JX, Y )}ζ.
Taking Y = ξ to (4.2) and using (3.4)1, we have

(4.3) −ϑ(X)V = ∇VX + F∇ξX + βu(X)ζ.

Taking the scalar product with V and ζ to (4.3) by turns, we have

(4.4) u(∇VX) = 0, θ(∇VX) = −βu(X).

Replacing Y by V to (4.2) and using the fact that θ(V ) = 0, we have

(4.5) ϑ(X)ξ = −∇ξX + F∇VX −B(X,V )U + αu(X)ζ.

Applying F to this equation and using (2.10) and (4.4), we obtain

ϑ(X)V = ∇VX + F∇ξX + βu(X)ζ.

Comparing this equation with (4.3), we get ϑ = 0. Thus F is Lie parallel.
(2) Taking the scalar product with ζ to (4.5), we have g(∇ξX, ζ) = αu(X).

Taking X = U to this result and using (3.13), we obtain α = 0.
(3) Taking the scalar product with N to (4.2) and using (3.7)2, we have

(4.6) − ḡ(∇FYX,N) + ḡ(∇YX,U) = 0.

Replacing X by ξ to (4.6) and using (2.7), and (3.5), we have

(4.7) B(X,U) = τ(FX).

Replacing X by U to (4.7) and using (3.12) and the fact that FU = 0, we get

(4.8) C(U, V ) = B(U,U) = 0.

Replacing X by V to (4.6) and using (3.5) and (3.14), we have

B(FY,U) = −τ(Y ).

Taking Y = U and Y = ζ and using the fact that FU = Fζ = 0, we obtain

(4.9) τ(U) = 0, τ(ζ) = 0.

Taking X = U to (4.2) and using (3.3) (3.10)1, (3.12) and (3.13), we get

u(Y )A
N
U − F (A

N
FY )−A

N
Y − τ(FY )U + βη(Y )ζ = 0.

Taking the scalar product with V and using (3.6), (3.12) and (4.8), we get

B(X,U) = −τ(FX).

Comparing this with (4.7), we obtain τ(FX) = 0. Replacing X by FY to this
result and using (2.10) and (4.9), we have τ = 0.

(4) Replacing Y by U to (3.3) and using (4.7) and τ = 0, we have

(4.10) B(U,X) = mθ(X).
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Taking X = U to (3.5) and using (4.10), we have g(A∗ξU,X) = 0, As S(TM) is

non-degenerate, we get A∗ξU = 0. Replacing X by ξ to (4.3) and using (3.8)1

and the fact that τ = 0, we obtain A∗ξV = 0. �

Theorem 4.4. Let M be a lightlike hypersurface of an indefinite trans-Sasakian
manifold M̄ with an (`,m)-type connection such that ζ is tangent to M . If U or
V is parallel with respect to the connection ∇ on M , then τ = 0 and α = β = 0,
i.e., M̄ is an indefinite cosymplectic manifold.

Proof. (1) If U is parallel with respect to ∇, then, taking the scalar product
with V and ζ to (3.13) such that ∇XU = 0 by turns, we obtain τ = 0 and
α = β = 0, respectively. Applying F to (3.13): F (A

N
X) = 0 and using (2.10),

(3.10)1 and the fact that α = β = 0, we obtain

(4.11) A
N
X = u(A

N
X)U.

(2) If V is parallel with respect to ∇, then, taking the scalar product with
U and ζ to (3.14) such that ∇XV = 0 by turns, we have τ = 0 and β = 0.
Applying F to (3.14): F (A∗ξX) = 0 and using (2.10) and (3.9)1, we obtain

A∗ξX = −αu(X)ζ + u(A∗ξX)U.

Taking the scalar product with U and using (3.5), we have B(X,U) = 0. Thus
B(ζ, U) = 0. Taking X = U and Y = ζ to (3.3), we get B(U, ζ) = m. On the
other hand, replacing X by U to (3.9)2, we have B(U, ζ) = m − α. From the
above two results, we get α = 0 and

(4.12) A∗ξX = u(A∗ξX)U.

As α = β = 0 in (1) and (2), M̄ is an indefinite cosymplectic manifold. �

5. Indefinite generalized Sasakian space forms

Denote by R̄, R and R∗ the curvature tensors of the (`,m)-type connection
∇̄ on M̄ , and the induced linear connections ∇ and ∇∗ on M and S(TM),
respectively. Using the Gauss-Weingarten formulae, we obtain Gauss equations
for M and S(TM), respectively, such that

R̄(X,Y )Z = R(X,Y )Z +B(X,Z)A
N
Y −B(Y, Z)A

N
X(5.1)

+ {(∇XB)(Y, Z)− (∇YB)(X,Z) + τ(X)B(Y, Z)

− τ(Y )B(X,Z) +B(T (X,Y ), Z)}N,
R(X,Y )PZ = R∗(X,Y )PZ + C(X,PZ)A∗ξY − C(Y, PZ)A∗ξX(5.2)

+ {(∇XC)(Y, PZ)− (∇Y C)(X,PZ)− σ(X)C(Y, PZ)

+ σ(Y )C(X,PZ) + C(T (X,Y ), PZ)}ξ.

Definition. An indefinite trans-Sasakian manifold (M̄, J, ζ, θ, ḡ) is called an
indefinite generalized Sasakian space form, denote it by M̄(f1, f2, f3), if there
exist three smooth functions f1, f2 and f3 on M̄ such that

R̃(X̄, Ȳ )Z̄ = f1{ḡ(Ȳ , Z̄)X̄ − ḡ(X̄, Z̄)Ȳ }(5.3)
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+ f2{ḡ(X̄, JZ̄)JȲ − ḡ(Ȳ , JZ̄)JX̄ + 2ḡ(X̄, JȲ )JZ̄}
+ f3{θ(X̄)θ(Z̄)Ȳ − θ(Ȳ )θ(Z̄)X̄

+ ḡ(X̄, Z̄)θ(Ȳ )ζ − ḡ(Ȳ , Z̄)θ(X̄)ζ},

where R̃ is the curvature tensor of the Levi-Civita connection ∇̃ on M̄ .

The generalized Sasakian space form M̄(f1, f2, f3) was introduced by Alegre
et. al. [4]. Sasakian, Kenmotsu and cosymplectic space forms are important
kinds of generalized Sasakian space forms such that

f1 = c+3
4 , f2 = f3 = c−1

4 ; f1 = c−3
4 , f2 = f3 = c+1

4 ; f1 = f2 = f3 = c
4 ,

respectively, where c is a constant J-sectional curvature of each space forms.
By directed calculations from (1.2), (1.3) and (2.2), we see that

R̄(X̄, Ȳ )Z̄ = R̃(X̄, Ȳ )Z̄(5.4)

+ (∇̄X̄θ)(Z̄){`Ȳ +mJȲ } − (∇̄Ȳ θ)(Z̄){`X̄ +mJX̄}
+ θ(Z̄){(X̄`)Ȳ − (Ȳ `)X̄ + (X̄m)JȲ − (Ȳ m)JX̄

− mα[θ(Ȳ )X̄ − θ(X̄)Ȳ ]−mβ[θ(Ȳ )JX̄ − θ(X̄)JȲ ]

− 2mβḡ(X̄, JȲ )ζ}.

Taking the scalar product with ξ and N to (5.4) by turns and then, substi-
tuting (5.1), (3.2) and (5.3) and using (5.2) and (3.7)2, we get

(∇XB)(Y,Z)− (∇YB)(X,Z)(5.5)

+ {τ(X)− `θ(X)}B(Y,Z)− {τ(Y )− `θ(Y )}B(X,Z)

− m{θ(X)B(FY,Z)− θ(Y )B(FX,Z)}
− m{(∇̄Xθ)(Z)u(Y )− (∇̄Y θ)(Z)u(X)}
− θ(Z){[Xm+mβθ(X)]u(Y )− [Y m+mβθ(Y )]u(X)}

= f2{u(Y )ḡ(X, JZ)− u(X)ḡ(Y, JZ) + 2u(Z)ḡ(X,JY )},

(∇XC)(Y, PZ)− (∇Y C)(X,PZ)(5.6)

− {τ(X) + `θ(X)}C(Y, PZ) + {τ(Y ) + `θ(Y )}C(X,PZ)

− m{θ(X)C(FY, PZ)− θ(Y )C(FX,PZ)}
− (∇̄Xθ)(PZ){`η(Y ) +mv(Y )}+ (∇̄Y θ)(PZ){`η(X) +mv(X)}
− θ(PZ){[X`+mαθ(X)]η(Y )− [Y `+mαθ(Y )]η(X)

+ [Xm+mβθ(X)]v(Y )− [Y m+mβθ(Y )]v(X)}
= f1{g(Y, PZ)η(X)− g(X,PZ)η(Y )}

+ f2{v(Y )ḡ(X, JPZ)− v(X)ḡ(Y, JPZ) + 2v(PZ)ḡ(X, JY )}
+ f3{θ(X)η(Y )− θ(Y )η(X)}θ(PZ).

Theorem 5.1. Let M be a lightlike hypersurface of an indefinite generalized
Sasakian space form M̄(f1, f2, f3) with an (`,m)-type connection subject such
that the structure vector field ζ is tangent to M . Then
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(1) α is a constant on M ,
(2) αβ = 0, and
(3) f1 − f2 = α2 − β2 and f1 − f3 = α2 − β2 − ζβ.

Proof. Applying ∇̄X to θ(V ) = 0 and θ(U) = 0 by turns and using (2.4),
(3.13), (3.14) and the facts that θ ◦ J = θ ◦ F = θ(N) = 0, we have

(5.7) (∇̄Xθ)(V ) = βu(X), (∇̄Xθ)(U) = αη(X) + βv(X).

Applying ∇X to (3.12): B(Y,U) = C(Y, V ) and using (2.9), (3.5), (3.6),
(3.7), (3.9)2, (3.10)2, (3.13) and (3.14), we obtain

(∇XB)(Y, U) = (∇XC)(Y, V )− 2τ(X)C(Y, V )

+ β(m− α){u(Y )v(X)− u(X)v(Y )}
+ α(m− α)u(Y )η(X)− β(`+ β)u(X)η(Y )

− g(A∗ξX,F (A
N
Y ))− g(A∗ξY, F (A

N
X)).

Substituting this and (3.12) into (5.6) with Z = U and using (5.7)2, we get

(∇XC)(Y, V )− (∇Y C)(X,V )

− {τ(X) + `θ(X)}C(Y, V ) + {τ(Y ) + `θ(Y )}C(X,V )

− m{θ(X)C(FY, V ) + θ(Y )C(FX, V )}
+ β(m− 2α){u(Y )v(X)− u(X)v(Y )}
+ (`β − α2 + β2){u(Y )η(X)− u(X)η(Y )}

= f2{u(Y )η(X)− u(X)η(Y ) + 2ḡ(X, JY )}.
Comparing this with (5.6) such that PZ = V and using (5.7)1, we obtain

{f1 − f2 − α2 + β2}{u(Y )η(X)− u(X)η(Y )}
= 2αβ{u(Y )v(X)− u(X)v(Y )}.

Taking Y = U, X = ξ and Y = U, X = V to this by turns, we have

f1 − f2 = α2 − β2, αβ = 0.

Applying ∇̄X to η(Y ) = ḡ(Y,N) and using (1.1) and (2.5), we have

(5.8) (∇Xη)(Y ) = −g(A
N
X,Y ) + τ(X)η(Y )− {`η(X) +mv(X)}θ(Y ).

Applying ∇̄X to θ(ζ) = 1 and using (2.3), we obtain

(5.9) (∇̄Xθ)(ζ) = −`θ(X).

Applying ∇Y to (3.10)2 and using (3.11), (3.17) and (5.8), we have

(∇XC)(Y, ζ)

= X(`+ β)η(Y ) +X(m− α)v(Y )

+ (`+ β){−g(A
N
X,Y )− g(A

N
Y,X)

+ τ(X)η(Y )− `[θ(Y )η(X) + θ(X)η(Y )]

+ βθ(X)η(Y )−m[θ(Y )v(X) + θ(X)v(Y )]}
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+ (m− α){−g(A
N
X,FY )− g(A

N
Y, FX)

+ v(Y )τ(X) + (m− α)θ(Y )η(X)

+ βθ(X)v(Y )− (`+ β)θ(Y )v(X)}.

Substituting this equation and (3.10)2 into (5.6) such that PZ = ζ and using
(5.9) and the fact that αβ = 0, we obtain

{Xβ + (f1 − f3 − α2 + β2)θ(X)}η(Y )

− {Y β + (f1 − f3 − α2 + β2)θ(Y )}η(X) = (Xα)v(Y )− (Y α)v(X).

Taking X = ζ, Y = ξ and X = U, Y = V to this by turns, we have

f1 − f3 = α2 − β2 − ζβ, Uα = 0.

Applying ∇Y to (3.9)2 and using (3.11) and (3.16), we have

(∇XB)(Y, ζ) = X(m− α)u(Y )− (`+ β)B(Y,X)

− (m− α){B(X,FY ) +B(Y, FX) + u(Y )τ(X)

+ `θ(Y )u(X) + β[θ(Y )u(X)− θ(X)u(Y )]}.

Substituting this into (5.5) such that Z = ζ and using (3.3) and (5.9), we have

(Xα)u(Y ) = (Y α)u(X).

Taking Y = U to this result and using the fact that Uα = 0, we have Xα = 0.
Therefore α is a constant. This completes the proof of the theorem. �

Definition. (1) A lightlike hypersurface M is called totally umbilical [6] if there
exists a smooth function ρ on a coordinate neighborhood U such that

B(X,Y ) = ρg(X,Y ).

In case ρ = 0, we say that M is totally geodesic.
(2) A screen distribution S(TM) is called totally umbilical [6] in M if there

exists a smooth function γ on a coordinate neighborhood U such that

C(X,PY ) = γg(X,Y ).

In case γ = 0, we say that S(TM) is totally geodesic in M .
(3) A lightlike hypersurface M is called screen conformal [9] if there exists

a non-vanishing smooth function ϕ on U such that

(5.10) C(X,PY ) = ϕB(X,PY ).

Theorem 5.2. Let M be a lightlike hypersurface of an indefinite generalized
Sasakian space form M̄(f1, f2, f3) with an (`,m)-type connection subject such
that ζ is tangent to M . If one of the following four conditions

(1) M is Lie recurrent,
(2) M is totally umbilical,
(3) S(TM) is totally umbilical, and
(4) M is screen conformal,
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is satisfied, then

α = 0, f1 = −β2, f2 = 0, f3 = −ζβ.
In case (3) and (4), m = α = 0, ` = −β 6= 0 and M̄(f1, f2, f3) is an indefinite
β-Kenmotsu manifold with a semi-symmetric non-metric connection.

Proof. (1) By Theorem 4.2, we have (4.7), (4.10) and α = τ = 0. Thus

(5.11) B(X,U) = 0, B(U,X) = mθ(X).

Applying ∇Y to (5.11)1 and using (3.9)2, (3.13) and the result: α = 0, we get

(∇XB)(Y,U) = −B(Y, F (A
N
X)) +mβu(Y )v(X).

Substituting this into (5.5) such that Z = U and using (5.7)2, we have

B(X,F (A
N
Y ))−B(Y, F (A

N
X)) = f2{u(Y )η(X)− u(X)η(Y ) + 2ḡ(X, JY )}.

Taking X = ξ and Y = U to this and using (3.4)2, (5.11)2 and θ ◦ F = 0, we
obtain f2 = 0. Therefore f1 = −β2 and f3 = −ζβ by Theorem 5.1.

(2) If M is totally umbilical, then B is symmetric. Thus m = 0 by Theorem
3.1. In this case, the equation (3.9)2 is reduced to

ρθ(X) = −αu(X).

Taking X = ζ and X = U to this equation by turns, we have ρ = 0 and α = 0,
respectively. As ρ = 0, M is totally geodesic. Taking Z = U to (5.5) and using
the facts that B = 0 and m = 0, we have

f2{u(Y )η(X)− u(X)η(Y ) + 2ḡ(X, JY )} = 0.

Taking X = ξ and Y = U to this equation, we get f2 = 0. Thus we also have
f1 = −β2 and f3 = −ζβ by Theorem 5.1.

(3) If S(TM) is totally umbilical, then (3.10)2 is reduced to

γθ(X) = (`+ β)η(X) + (m− α)v(X).

Taking X = ζ, X = ξ and X = V to this equation by turns, we have

γ = 0, ` = −β, m = α,

respectively. As γ = 0, C(X,V ) = 0. From (3.12), B(X,U) = 0. Replacing Y
by U to (3.3) and using the facts that B(X,U) = 0 and m = α, we obtain

B(U,X) = αθ(X).

Taking X = ζ to this and using (3.9)2 with m = α, we have α = 0.
As α = m = 0 and β = −` 6= 0, M̄ is an indefinite β-Kenmotsu manifold

with a semi-symmetric non-metric connection and f1 + β2 = f2 by Theorem
5.1. Taking PZ = V to (5.6) and using (5.7)1 and the fact that C = 0, we have

(f1 + β2){u(Y )η(X)− u(X)η(Y )}+ 2f2 ḡ(X, JY ) = 0.

Taking X = ξ and Y = U , we get f2 = 0. Thus f1 = −β2 and f3 = −ζβ.
(4) If M is screen conformal, then, from (3.9)2, (3.10)2, and (5.10), we have

(`+ β)η(X) + (m− α)v(X) = ϕ(m− α)u(X).
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Taking X = ξ and X = V to this equation by turns, we have

` = −β, m = α,

respectively. As αβ = 0, it follow that

(5.12) `m = `α = mβ = 0, `β = −β2, mα = α2.

Let µ = U − ϕV . Then, from (3.12), we obtain

(5.13) B(X,µ) = 0, g(µ, µ) = −2ϕ, Jµ = N − ϕξ.
Substituting (3.5) and (3.6) into (5.10) and using the facts that A

N
X −

ϕA∗ξX, ζ ∈ Γ(S(TM)) and S(TM) is non-degenerate, we obtain

(5.14) A
N
X − ϕA∗ξX = −{`η(X) +mv(X)− ϕmu(X)}ζ.

Applying ∇X to µ = U −ϕV and using (3.13), (3.14), (5.14) and the facts that
F is a linear operator and Fζ = 0, we have

∇Xµ = τ(X)U − {Xϕ− ϕτ(X)}V(5.15)

− {αη(X) + βv(X)− ϕβu(X)}ζ.
Applying ∇̄X to θ(µ) = 0 and using (5.15), we obtain

(5.16) (∇̄Xθ)(µ) = αη(X) + βv(X)− ϕβu(X).

Applying ∇X to C(Y, PZ) = ϕB(Y, PZ), we have

(∇XC)(Y, PZ) = (Xϕ)B(Y, PZ) + ϕ(∇XB)(Y, PZ).

Substituting this equation into (5.6) and using (5.5) and mβ = 0, we have

{Xϕ− 2ϕτ(X)}B(Y, PZ)− {Y ϕ− 2ϕτ(Y )}B(X,PZ)(5.17)

− (∇̄Xθ)(PZ){`η(Y ) +mv(Y )− ϕmu(Y )}
+ (∇̄Y θ)(PZ){`η(X) +mv(X)− ϕmu(X)}
− θ(PZ){[X`+mαθ(X)]η(Y )− [Y `+mαθ(Y )]η(X)

+ (Xm)g(µ, Y )− (Y m)g(µ,X)}
= f1{g(Y, PZ)η(X)− g(X,PZ)η(Y )}

+ f2{g(µ, Y )ḡ(X, JPZ)− g(µ,X)ḡ(Y, JPZ) + 2g(µ, PZ)ḡ(X, JY )}
+ f3{θ(X)η(Y )− θ(Y )η(X)}θ(PZ).

Replacing PZ by µ to this and using (5.12), (5.13) and (5.16), we obtain

(α2 + β2){g(µ,X)η(Y )− g(µ, Y )η(X)}
= (f1 + f2){g(µ, Y )η(X)− g(µ,X)η(Y )} − 4ϕf2ḡ(X, JY ).

Taking X = ξ and Y = V to this equation and using g(µ, V ) = 1, we get

f1 + f2 = −(α2 + β2).

From this result and Theorem 5.1, we see that α = 0. As α = m = 0 and
β = −` 6= 0, M̄(f1, f2, f3) is an indefinite β-Kenmotsu manifold with a semi-
symmetric non-metric connection.
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Applying ∇̄X to θ(ξ) = 0 and using (3.8)2 and (3.9)1, we obtain

(5.18) (∇̄Xθ)(ξ) = −αu(X) = 0.

Replacing Y by ξ to (5.17) and using (5.18), we obtain

{ξϕ− 2ϕτ(ξ)}B(X,PZ)

= f1g(X,PZ) + f2{g(µ,X)u(PZ) + 2f2g(µ, PZ)u(X)} − f3θ(X)θ(PZ).

Taking X = V, PZ = U and then, X = U, PZ = V by turns, we have

{ξϕ− 2ϕτ(ξ)}B(V,U) = f1 + f2,

{ξϕ− 2ϕτ(ξ)}B(U, V ) = f1 + 2f2,

respectively. As B(U, V ) = B(V,U) by (3.3), from the last two equations we
show that f2 = 0. Thus f1 = −β2 and f3 = −ζβ. �

Theorem 5.3. Let M be a lightlike hypersurface of an indefinite generalized
Sasakian space form M̄(f1, f2, f3) with an (`,m)-type connection such that ζ is
tangent to M . If U or V is parallel with respect to ∇, then M̄(f1, f2, f3) is a
flat manifold with an indefinite cosymplectic structure such that

α = β = 0, f1 = f2 = f3 = 0.

Proof. (1) If U is parallel with respect to ∇, then, by (1) of Theorem 4.4, we
have (4.11) and the results: τ = α = β = 0. Thus f1 = f2 = f3 by Theorem
5.1. Taking the scalar product with U to (4.11) and using (3.6), we obtain

C(X,U) = 0.

Applying ∇X to C(Y, U) = 0 and using the fact that U is parallel, we get

(∇XC)(Y,U) = 0.

Substituting the last two equations into (5.6) such that PZ = U and using
(5.7)2 such that α = β = 0, we have

(f1 + f2){v(Y )η(X)− v(X)η(Y )} = 0.

Taking X = V and Y = ξ, we obtain f1 + f2 = 0. Thus f1 = f2 = f3 = 0.
(2) If V is parallel with respect to ∇, then, by (2) of Theorem 4.4, we have

(4.12) and the results: τ = α = β = 0. Thus f1 = f2 = f3 by Theorem 5.1.
Taking the scalar product with U to (4.12) and using (3.5) and (3.12), we get

C(X,V ) = 0.

Applying ∇X to C(Y, V ) = 0 and using the fact that V is parallel, we obtain

(∇XC)(Y, V ) = 0.

Substituting the last two equations into (5.6) such that PZ = V and using
(5.7)1 such that β = 0, we have

f1{u(Y )η(X)− u(X)η(Y )}+ 2f2ḡ(X, JY ) = 0.

Taking X = ξ and Y = U , we obtain f1 + 2f2 = 0. Thus f1 = f2 = f3 = 0. �
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[5] C. Cǎlin, Contributions to Geometry of CR-Submanifold, Thesis, University of Iasi,

Romania, 1998.

[6] K. L. Duggal and A. Bejancu, Lightlike Submanifolds of Semi-Riemannian Manifolds
and Applications, Mathematics and its Applications, 364, Kluwer Academic Publishers

Group, Dordrecht, 1996.
[7] S. Golab, On semi-symmetric and quarter-symmetric linear connections, Tensor (N.S.)

29 (1975), no. 3, 249–254.

[8] H. A. Hayden, Sub-Spaces of a Space with Torsion, Proc. London Math. Soc. (2) 34
(1932), no. 1, 27–50.

[9] D. H. Jin, Geometry of lightlike hypersurfaces of an indefinite Sasakian manifold, Indian

J. Pure Appl. Math. 41 (2010), no. 4, 569–581.
[10] , Special lightlike hypersurfaces of indefinite Kaehler manifolds, Filomat 30

(2016), no. 7, 1919–1930.

[11] , Lightlike hypersurfaces of an indefinite trans-Sasakian manifold with a non-
metric φ-symmetric connection, Bull. Korean Math. Soc. 53 (2016), no. 6, 1771–1783.

[12] , Lightlike hypersurfaces of an indefinite Kaehler manifold with a semi-sym-
metric non-metric connection, J. Korean Math. Soc. 54 (2017), no. 1, 101–115.

[13] , Lightlike hypersurfaces of an indefinite Kaehler manifold with a non-metric

φ-symmetric connection, Bull. Korean Math. Soc. 54 (2017), no. 2, 619–632.
[14] , Generic lightlike submanifolds of an indefinite trans-Sasakian manifold with

a semi-symmetric non-metric connection, JP Journal of Geometry and Topology 20

(2017), no. 2, 129–161.
[15] , Generic lightlike submanifolds of an indefinite Kaehler manifold with a non-

metric φ-symmetric connection, Commun. Korean Math. Soc. 32 (2017), no. 4, 1047–

1065.
[16] J. A. Oubina, New classes of almost contact metric structures, Publ. Math. Debrecen

32 (1985), no. 3-4, 187–193.

[17] J. Sengupta and B. Biswas, Quarter-symmetric non-metric connection on a Sasakian
manifold, Bull. Calcutta Math. Soc. 95 (2003), no. 2, 169–176.

[18] K. Yano and T. Imai, Quarter-symmetric metric connections and their curvature ten-
sors, Tensor (N.S.) 38 (1982), 13–18.

Dae Ho Jin

Department of Mathematics

Dongguk University
Kyongju 38066, Korea
Email address: jindh@dongguk.ac.kr


