• 제목/요약/키워드: Second-order differential equation

검색결과 197건 처리시간 0.027초

EXPONENTIALLY FITTED NUMERICAL SCHEME FOR SINGULARLY PERTURBED DIFFERENTIAL EQUATIONS INVOLVING SMALL DELAYS

  • ANGASU, MERGA AMARA;DURESSA, GEMECHIS FILE;WOLDAREGAY, MESFIN MEKURIA
    • Journal of applied mathematics & informatics
    • /
    • 제39권3_4호
    • /
    • pp.419-435
    • /
    • 2021
  • This paper deals with numerical treatment of singularly perturbed differential equations involving small delays. The highest order derivative in the equation is multiplied by a perturbation parameter 𝜀 taking arbitrary values in the interval (0, 1]. For small 𝜀, the problem involves a boundary layer of width O(𝜀), where the solution changes by a finite value, while its derivative grows unboundedly as 𝜀 tends to zero. The considered problem contains delay on the convection and reaction terms. The terms with the delays are approximated using Taylor series approximations resulting to asymptotically equivalent singularly perturbed BVPs. Inducing exponential fitting factor for the term containing the singular perturbation parameter and using central finite difference for the derivative terms, numerical scheme is developed. The stability and uniform convergence of difference schemes are studied. Using a priori estimates we show the convergence of the scheme in maximum norm. The scheme converges with second order of convergence for the case 𝜀 = O(N-1) and for the case 𝜀 ≪ N-1, the scheme converge uniformly with first order of convergence, where N is number of mesh intervals in the domain discretization. We compare the accuracy of the developed scheme with the results in the literature. It is found that the proposed scheme gives accurate result than the one in the literatures.

ANALYTICAL AND NUMERICAL SOLUTIONS OF A CLASS OF GENERALISED LANE-EMDEN EQUATIONS

  • RICHARD OLU, AWONUSIKA;PETER OLUWAFEMI, OLATUNJI
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제26권4호
    • /
    • pp.185-223
    • /
    • 2022
  • The classical equation of Jonathan Homer Lane and Robert Emden, a nonlinear second-order ordinary differential equation, models the isothermal spherical clouded gases under the influence of the mutual attractive interaction between the gases' molecules. In this paper, the Adomian decomposition method (ADM) is presented to obtain highly accurate and reliable analytical solutions of a class of generalised Lane-Emden equations with strong nonlinearities. The nonlinear term f(y(x)) of the proposed problem is given by the integer powers of a continuous real-valued function h(y(x)), that is, f(y(x)) = hm(y(x)), for integer m ≥ 0, real x > 0. In the end, numerical comparisons are presented between the analytical results obtained using the ADM and numerical solutions using the eighth-order nested second derivative two-step Runge-Kutta method (NSDTSRKM) to illustrate the reliability, accuracy, effectiveness and convenience of the proposed methods. The special cases h(y) = sin y(x), cos y(x); h(y) = sinh y(x), cosh y(x) are considered explicitly using both methods. Interestingly, in each of these methods, a unified result is presented for an integer power of any continuous real-valued function - compared with the case by case computations for the nonlinear functions f(y). The results presented in this paper are a generalisation of several published results. Several examples are given to illustrate the proposed methods. Tables of expansion coefficients of the series solutions of some special Lane-Emden type equations are presented. Comparisons of the two results indicate that both methods are reliably and accurately efficient in solving a class of singular strongly nonlinear ordinary differential equations.

Range of Operators and an Application to Existence of a Periodic Solution

  • Bae, Jong Sook;Sung, Nak So
    • 충청수학회지
    • /
    • 제1권1호
    • /
    • pp.19-26
    • /
    • 1988
  • In this paper, we calculate the precise estimation of range of a Gateaux differentiable operator, and apply to the existence of a periodic solution of the second order nonlinear differential equation $$z^{{\prime}{\prime}}+Az^{\prime}+G(z)=e(t)=e(t+2{\pi})$$.

  • PDF

THE METHOD OF QUASILINEARIZATION AND A THREE-POINT BOUNDARY VALUE PROBLEM

  • Eloe, Paul W.;Gao, Yang
    • 대한수학회지
    • /
    • 제39권2호
    • /
    • pp.319-330
    • /
    • 2002
  • The method of quasilinearization generates a monotone iteration scheme whose iterates converge quadratically to a unique solution of the problem at hand. In this paper, we apply the method to two families of three-point boundary value problems for second order ordinary differential equations: Linear boundary conditions and nonlinear boundary conditions are addressed independently. For linear boundary conditions, an appropriate Green\`s function is constructed. Fer nonlinear boundary conditions, we show that these nonlinearities can be addressed similarly to the nonlinearities in the differential equation.

OSCILLATION AND NONOSCILLATION CRITERIA FOR DIFFERENTIAL EQUATIONS OF SECOND ORDER

  • Kim, RakJoong
    • Korean Journal of Mathematics
    • /
    • 제19권4호
    • /
    • pp.391-402
    • /
    • 2011
  • We give necessary and sufficient conditions such that the homogeneous differential equations of the type: $$(r(t)x^{\prime}(t))^{\prime}+q(t)x^{\prime}(t)+p(t)x(t)=0$$ are nonoscillatory where $r(t)$ > 0 for $t{\in}I=[{\alpha},{\infty})$, ${\alpha}$ > 0. Under the suitable conditions we show that the above equation is nonoscillatory if and only if for ${\gamma}$ > 0, $$(r(t)x^{\prime}(t))^{\prime}+q(t)x^{\prime}(t)+p(t)x(t-{\gamma})=0$$ is nonoscillatory. We obtain several comparison theorems.

이족 보행로봇의 3차원 모의실험기 개발 (Development of 3-Dimensional Simulator for a Biped Robot)

  • 노경곤;김진걸;허욱열
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 하계학술대회 논문집 D
    • /
    • pp.2438-2440
    • /
    • 2004
  • This study is concerned with development of 3-Dimensional simulator of a biped robot that has a prismatic balancing weight or a revolute balancing weight. The dynamic stability equation of a biped robot which have a prismatic balancing weight is conditional linear but a walking robot's stability equation with a revolute balancing weight is nonlinear. To get a stable gait of a biped robot, stabilization equations with ZMP (Zero Moment Point) are modeled as non-homogeneous second order differential equations for each balancing weight type. A trajectory of balancing weight can be directly calculated with the FDM (Finite Difference Method) solution of the linearized differential equation. In this paper, the 3-Dimensional graphic simulator is programmed to get and calculate the desired ZMP and the actual ZMP. Walking of 4 steps was simulated and verified. This balancing system will be applied to a biped humanoid robot, which consist Begs and upper body, at future work.

  • PDF

균형점 정형화를 이용한 이족보행로봇 제어 (Control of a Biped Walking Robot using ZMP Formulation)

  • 임선호;김진걸
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제48권8호
    • /
    • pp.1022-1030
    • /
    • 1999
  • This paper is concerned with the balancing motion formulation and the control of ZMP (zero moment point) for a biped walking robot with balancing joints. The balancing equation of a biped robot can be modeled as the second order non-homogeneous differential equation, which makes it possible to plan the desired trajectories for various gaits or motions. Also, the balancing motion can be defined easily by solving the differential equation without pre-processing or heuristic procedures. The actual experiments are performed on biped walking robot system IWR-III, developed in our Automatic Control Lab. The system has the structure of three pitches in each leg, and one roll and one prismatic type in balancing joints. The walking simulations and the experimental results on IWR-III are shown using the proposed formula and control algorithm.

  • PDF

HELICOIDAL MINIMAL SURFACES IN A CONFORMALLY FLAT 3-SPACE

  • Araujo, Kellcio Oliveira;Cui, Ningwei;Pina, Romildo da Silva
    • 대한수학회보
    • /
    • 제53권2호
    • /
    • pp.531-540
    • /
    • 2016
  • In this work, we introduce the complete Riemannian manifold $\mathbb{F}_3$ which is a three-dimensional real vector space endowed with a conformally flat metric that is a solution of the Einstein equation. We obtain a second order nonlinear ordinary differential equation that characterizes the helicoidal minimal surfaces in $\mathbb{F}_3$. We show that the helicoid is a complete minimal surface in $\mathbb{F}_3$. Moreover we obtain a local solution of this differential equation which is a two-parameter family of functions ${\lambda}_h,K_2$ explicitly given by an integral and defined on an open interval. Consequently, we show that the helicoidal motion applied on the curve defined from ${\lambda}_h,K_2$ gives a two-parameter family of helicoidal minimal surfaces in $\mathbb{F}_3$.

Solving partial differential equation for atmospheric dispersion of radioactive material using physics-informed neural network

  • Gibeom Kim;Gyunyoung Heo
    • Nuclear Engineering and Technology
    • /
    • 제55권6호
    • /
    • pp.2305-2314
    • /
    • 2023
  • The governing equations of atmospheric dispersion most often taking the form of a second-order partial differential equation (PDE). Currently, typical computational codes for predicting atmospheric dispersion use the Gaussian plume model that is an analytic solution. A Gaussian model is simple and enables rapid simulations, but it can be difficult to apply to situations with complex model parameters. Recently, a method of solving PDEs using artificial neural networks called physics-informed neural network (PINN) has been proposed. The PINN assumes the latent (hidden) solution of a PDE as an arbitrary neural network model and approximates the solution by optimizing the model. Unlike a Gaussian model, the PINN is intuitive in that it does not require special assumptions and uses the original equation without modifications. In this paper, we describe an approach to atmospheric dispersion modeling using the PINN and show its applicability through simple case studies. The results are compared with analytic and fundamental numerical methods to assess the accuracy and other features. The proposed PINN approximates the solution with reasonable accuracy. Considering that its procedure is divided into training and prediction steps, the PINN also offers the advantage of rapid simulations once the training is over.