DOI QR코드

DOI QR Code

Solving partial differential equation for atmospheric dispersion of radioactive material using physics-informed neural network

  • Gibeom Kim (Department of Nuclear Engineering, Kyung Hee University) ;
  • Gyunyoung Heo (Department of Nuclear Engineering, Kyung Hee University)
  • Received : 2022.10.31
  • Accepted : 2023.03.05
  • Published : 2023.06.25

Abstract

The governing equations of atmospheric dispersion most often taking the form of a second-order partial differential equation (PDE). Currently, typical computational codes for predicting atmospheric dispersion use the Gaussian plume model that is an analytic solution. A Gaussian model is simple and enables rapid simulations, but it can be difficult to apply to situations with complex model parameters. Recently, a method of solving PDEs using artificial neural networks called physics-informed neural network (PINN) has been proposed. The PINN assumes the latent (hidden) solution of a PDE as an arbitrary neural network model and approximates the solution by optimizing the model. Unlike a Gaussian model, the PINN is intuitive in that it does not require special assumptions and uses the original equation without modifications. In this paper, we describe an approach to atmospheric dispersion modeling using the PINN and show its applicability through simple case studies. The results are compared with analytic and fundamental numerical methods to assess the accuracy and other features. The proposed PINN approximates the solution with reasonable accuracy. Considering that its procedure is divided into training and prediction steps, the PINN also offers the advantage of rapid simulations once the training is over.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIP:Ministry of Science, ICT and Future Planning) (No. NRF-2021M2D2A1A02044210).

References

  1. US Nuclear Regulatory Commission, Standard review plans for environmental reviews for nuclear power plants, Supplement 1: Operating License Renewal (2013). NUREG-1555, Supplement 1, Revision 1.
  2. IAEA, Preparedness and Response for a Nuclear or Radiological Emergency, 7, IAEA Safety Standards Series No. GSR Part, Vienna, 2015. IAEA.
  3. A. De Visscher, Air Dispersion Modeling: Foundations and Applications, John Wiley & Sons, 2013.
  4. N.S. Holmes, L. Morawska, A review of dispersion modelling and its application to the dispersion of particles: an overview of different dispersion models available, Atmos. Environ. 40 (30) (2006) 5902-5928. https://doi.org/10.1016/j.atmosenv.2006.06.003
  5. A. Leelossy, F. Molnar, F. Izsak, A. Havasi, I. Lagzi, R. Meszaros, Dispersion modeling of air pollutants in the atmosphere: a review, Cent. Eur. J. Geosci. 6 (3) (2014) 257-278.
  6. A. Baklanov, Application of CFD methods for modelling in air pollution problems: possibilities and gaps, in: Urban Air Quality: Measurement, Modelling and Management, Springer, Dordrecht, 2000, pp. 181-189.
  7. A.F. Stein, R.R. Draxler, G.D. Rolph, B.J. Stunder, M.D. Cohen, F. Ngan, NOAA's HYSPLIT atmospheric transport and dispersion modeling system, Bull. Am. Meteorol. Soc. 96 (12) (2015) 2059-2077. https://doi.org/10.1175/BAMS-D-14-00110.1
  8. N. Sanin, G. Montero, A finite difference model for air pollution simulation, Adv. Eng. Software 38 (6) (2007) 358-365. https://doi.org/10.1016/j.advengsoft.2006.09.013
  9. R. Cervantes-Muratalla, L.P. Ramirez-Rodriguez, T. Mendivil-Reynoso, C.R.A. Murguia-Romero, D. Garcia-Bedoya, Application of fourier transform for distribution of pollutants in air, World J. Environ.l Biosci. 9 (2) (2020) 1-7.
  10. M. Raissi, P. Perdikaris, G.E. Karniadakis, Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations, J. Comput. Phys. 378 (2019) 686-707. https://doi.org/10.1016/j.jcp.2018.10.045
  11. J. Wang, X. Peng, Z. Chen, B. Zhou, Y. Zhou, N. Zhou, Surrogate modeling for neutron diffusion problems based on conservative physics-informed neural networks with boundary conditions enforcement, Ann. Nucl. Energy 176 (2022), 109234.
  12. L. Dong, L. Qi, T. Lei, A. Ping, Y. Fan, Solving multi-dimensional neutron diffusion equation using deep machine learning technology based on pinn model, 核动力工程 43 (2) (2022) 1-8.
  13. Y. Yang, H. Gong, S. Zhang, Q. Yang, Z. Chen, Q. He, Q. Li, A Data-Enabled Physics-Informed Neural Network with Comprehensive Numerical Study on Solving Neutron Diffusion Eigenvalue Problems, 2022 arXiv preprint arXiv: 2208.13483.
  14. E. Schiassi, M. De Florio, B.D. Ganapol, P. Picca, R. Furfaro, Physics-informed neural networks for the point kinetics equations for nuclear reactor dynamics, Ann. Nucl. Energy 167 (2022), 108833.
  15. X.C. Zhang, J.G. Gong, F.Z. Xuan, A physics-informed neural network for creep-fatigue life prediction of components at elevated temperatures, Eng. Fract. Mech. 258 (2021), 108130.
  16. X. Zhao, K. Shirvan, R.K. Salko, F. Guo, On the prediction of critical heat flux using a physics-informed machine learning-aided framework, Appl. Therm. Eng. 164 (2020), 114540.
  17. J.M. Stockie, The mathematics of atmospheric dispersion modeling, SIAM Rev. 53 (2) (2011) 349-372. https://doi.org/10.1137/10080991X
  18. A.J. Cimorelli, S.G. Perry, A. Venkatram, J.C. Weil, R.J. Paine, R.B. Wilson, et al., AERMOD: a dispersion model for industrial source applications. Part I: general model formulation and boundary layer characterization, J. Appl. Meteorol. 44 (5) (2005) 682-693. https://doi.org/10.1175/JAM2227.1
  19. CERC, ADMS 5 Atmospheric Dispersion Modelling System User Guide, 2016.
  20. U.S.NRC, Code Manual for MACCS2: Volume 1, User's Guide, 1998 (NUREG/CR-6613).
  21. U.S.NRC, RASCAL 4: Description of Models and Methods, 2012. NUREC-1940).
  22. R.H. Pletcher, J.C. Tannehill, D. Anderson, Computational Fluid Mechanics and Heat Transfer, CRC press, 2012.
  23. T.M.A.K. Azad, L.S. Andallah, Stability analysis of finite difference schemes for an advection diffusion equation, Bangladesh J. Sci. Res. 29 (2) (2016) 143-151. https://doi.org/10.3329/bjsr.v29i2.32331
  24. S.L. Brunton, J.N. Kutz, Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control, Cambridge University Press, 2019.
  25. TensorFlow Core, TensorFlow core tutorials. https://www.tensorflow.org/tutorials, 2020. (Accessed 27 October 2022).
  26. G. Canbolat, H. Kose, A. Yildizeli, S. Cadirci, Analytical and numerical solutions of the 1D advection-diffusion equation, in: 5th International Conference on Advances in Mechanical Engineering Istanbul, 2019.