• 제목/요약/키워드: Second order partial differential equation

검색결과 38건 처리시간 0.026초

Vibration and stability of fluid conveying pipes with stochastic parameters

  • Ganesan, R.;Ramu, S. Anantha
    • Structural Engineering and Mechanics
    • /
    • 제3권4호
    • /
    • pp.313-324
    • /
    • 1995
  • Flexible cantilever pipes conveying fluids with high velocity are analysed for their dynamic response and stability behaviour. The Young's modulus and mass per unit length of the pipe material have a stochastic distribution. The stochastic fields, that model the fluctuations of Young's modulus and mass density are characterized through their respective means, variances and autocorrelation functions or their equivalent power spectral density functions. The stochastic non self-adjoint partial differential equation is solved for the moments of characteristic values, by treating the point fluctuations to be stochastic perturbations. The second-order statistics of vibration frequencies and mode shapes are obtained. The critical flow velocity is first evaluated using the averaged eigenvalue equation. Through the eigenvalue equation, the statistics of vibration frequencies are transformed to yield critical flow velocity statistics. Expressions for the bounds of eigenvalues are obtained, which in turn yield the corresponding bounds for critical flow velocities.

Towards isotropic transport with co-meshes

  • Paulin, Christina;de Montigny, Eric Heulhard;Llor, Antoine
    • Coupled systems mechanics
    • /
    • 제9권1호
    • /
    • pp.63-75
    • /
    • 2020
  • Transport is the central ingredient of all numerical schemes for hyperbolic partial differential equations and in particular for hydrodynamics. Transport has thus been extensively studied in many of its features and for numerous specific applications. In more than one dimension, it is most commonly plagued by a major artifact: mesh imprinting. Though mesh imprinting is generally inevitable, its anisotropy can be modulated and is thus amenable to significant reduction. In the present work we introduce a new definition of stencils by taking into account second nearest neighbors (across cell corners) and call the resulting strategy "co-mesh approach". The modified equation is used to study numerical dissipation and tune enlarged stencils in order to minimize transport anisotropy.

Application of Hamilton variational principle for vibration of fluid filled structure

  • Khaled Mohamed Khedher;Muzamal Hussain;Rizwan Munir;Saleh Alsulamy;Ayed Eid Alluqmani
    • Advances in nano research
    • /
    • 제15권5호
    • /
    • pp.401-410
    • /
    • 2023
  • Vibration investigation of fluid-filled three layered cylindrical shells is studied here. A cylindrical shell is immersed in a fluid which is a non-viscous one. Shell motion equations are framed first order shell theory due to Love. These equations are partial differential equations which are usually solved by approximate technique. Robust and efficient techniques are favored to get precise results. Employment of the wave propagation approach procedure gives birth to the shell frequency equation. Use of acoustic wave equation is done to incorporate the sound pressure produced in a fluid. Hankel's functions of second kind designate the fluid influence. Mathematically the integral form of the Lagrange energy functional is converted into a set of three partial differential equations. It is also exhibited that the effect of frequencies is investigated by varying the different layers with constituent material. The coupled frequencies changes with these layers according to the material formation of fluid-filled FG-CSs. Throughout the computation, it is observed that the frequency behavior for the boundary conditions follow as; clamped-clamped (C-C), simply supported-simply supported (SS-SS) frequency curves are higher than that of clamped-simply (C-S) curves. Expressions for modal displacement functions, the three unknown functions are supposed in such way that the axial, circumferential and time variables are separated by the product method. Computer software MATLAB codes are used to solve the frequency equation for extracting vibrations of fluid-filled.

Bending and free vibration analysis of laminated piezoelectric composite plates

  • Zhang, Pengchong;Qi, Chengzhi;Fang, Hongyuan;Sun, Xu
    • Structural Engineering and Mechanics
    • /
    • 제75권6호
    • /
    • pp.747-769
    • /
    • 2020
  • This paper provides a semi-analytical approach to investigate the variations of 3D displacement components, electric potential, stresses, electric displacements and transverse vibration frequencies in laminated piezoelectric composite plates based on the scaled boundary finite element method (SBFEM) and the precise integration algorithm (PIA). The proposed approach can analyze the static and dynamic responses of multilayered piezoelectric plates with any number of laminae, various geometrical shapes, boundary conditions, thickness-to-length ratios and stacking sequences. Only a longitudinal surface of the plate is discretized into 2D elements, which helps to improve the computational efficiency. Comparing with plate theories and other numerical methods, only three displacement components and the electric potential are set as the basic unknown variables and can be represented analytically through the transverse direction. The whole derivation is built upon the three dimensional key equations of elasticity for the piezoelectric materials and no assumptions on the plate kinematics have been taken. By virtue of the equilibrium equations, the constitutive relations and the introduced set of scaled boundary coordinates, three-dimensional governing partial differential equations are converted into the second order ordinary differential matrix equation. Furthermore, aided by the introduced internal nodal force, a first order ordinary differential equation is obtained with its general solution in the form of a matrix exponent. To further improve the accuracy of the matrix exponent in the SBFEM, the PIA is employed to make sure any desired accuracy of the mechanical and electric variables. By virtue of the kinetic energy technique, the global mass matrix of the composite plates constituted by piezoelectric laminae is constructed for the first time based on the SBFEM. Finally, comparisons with the exact solutions and available results are made to confirm the accuracy and effectiveness of the developed methodology. What's more, the effect of boundary conditions, thickness-to-length ratios and stacking sequences of laminae on the distributions of natural frequencies, mechanical and electric fields in laminated piezoelectric composite plates is evaluated.

On mixing the Rayleigh-Ritz formulation with Hankel's function for vibration of fluid-filled functionally graded cylindrical shell

  • Hussain, Muzamal;Naeem, Muhammad Nawaz;Shahzad, Aamir;Taj, Muhammad;Asghar, Sehar;Fatahi-Vajari, Alireza;Singh, Rahul;Tounsi, Abdelouahed
    • Advances in Computational Design
    • /
    • 제5권4호
    • /
    • pp.363-380
    • /
    • 2020
  • In this paper, a cylindrical shell is immersed in a non-viscous fluid using first order shell theory of Sander. These equations are partial differential equations which are solved by approximate technique. Robust and efficient techniques are favored to get precise results. Employment of the Rayleigh-Ritz procedure gives birth to the shell frequency equation. Use of acoustic wave equation is done to incorporate the sound pressure produced in a fluid. Hankel's functions of second kind designate the fluid influence. Mathematically the integral form of the Lagrange energy functional is converted into a set of three partial differential equations. Throughout the computation, simply supported edge condition is used. Expressions for modal displacement functions, the three unknown functions are supposed in such way that the axial, circumferential and time variables are separated by the product method. Comparison is made for empty and fluid-filled cylindrical shell with circumferential wave number, length- and height-radius ratios, it is found that the fluid-filled frequencies are lower than that of without fluid. To generate the fundamental natural frequencies and for better accuracy and effectiveness, the computer software MATLAB is used.

Transverse dynamics of slender piezoelectric bimorphs with resistive-inductive electrodes

  • Schoeftner, Juergen;Buchberger, Gerda;Benjeddou, Ayech
    • Smart Structures and Systems
    • /
    • 제18권2호
    • /
    • pp.355-374
    • /
    • 2016
  • This paper presents and compares a one-dimensional (1D) bending theory for piezoelectric thin beam-type structures with resistive-inductive electrodes to ANSYS$^{(R)}$ three-dimensional (3D) finite element (FE) analysis. In particular, the lateral deflections and vibrations of slender piezoelectric beams are considered. The peculiarity of the piezoelectric beam model is the modeling of electrodes in such a manner that is does not fulfill the equipotential area condition. The case of ideal, perfectly conductive electrodes is a special case of our 1D model. Two-coupled partial differential equations are obtained for the lateral deflection and for the voltage distribution along the electrodes: the first one is an extended Bernoulli-Euler beam equation (second-order in time, forth order in space) and the second one the so-called Telegrapher's equation (second-order in time and space). Analytical results of our theory are validated by 3D electromechanically coupled FE simulations with ANSYS$^{(R)}$. A clamped-hinged beam is considered with various types of electrodes for the piezoelectric layers, which can be either resistive and/or inductive. A natural frequency analysis as well as quasi-static and dynamic simulations are performed. A good agreement between the extended beam theory and the FE results is found. Finally, the practical relevance of this type of electrodes is shown. It is found that the damping capability of properly tuned resistive or resistive-inductive electrodes exceeds the damping performance of beams, where the electrodes are simply linked to an optimized impedance.

FINITE-DIFFERENCE BISECTION ALGORITHMS FOR FREE BOUNDARIES OF AMERICAN OPTIONS

  • Kang, Sunbu;Kim, Taekkeun;Kwon, Yonghoon
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제19권1호
    • /
    • pp.1-21
    • /
    • 2015
  • This paper presents two algorithms based on the Jamshidian equation which is from the Black-Scholes partial differential equation. The first algorithm is for American call options and the second one is for American put options. They compute numerically free boundary and then option price, iteratively, because the free boundary and the option price are coupled implicitly. By the upwind finite-difference scheme, we discretize the Jamshidian equation with respect to asset variable s and set up a linear system whose solution is an approximation to the option value. Using the property that the coefficient matrix of this linear system is an M-matrix, we prove several theorems in order to formulate a bisection method, which generates a sequence of intervals converging to the fixed interval containing the free boundary value with error bound h. These algorithms have the accuracy of O(k + h), where k and h are step sizes of variables t and s, respectively. We prove that they are unconditionally stable. We applied our algorithms for a series of numerical experiments and compared them with other algorithms. Our algorithms are efficient and applicable to options with such constraints as r > d, $r{\leq}d$, long-time or short-time maturity T.

BARRIER OPTIONS UNDER THE MFBM WITH JUMPS : APPLICATION OF THE BDF2 METHOD

  • Choi, Heungsu;Lee, Younhee
    • 충청수학회지
    • /
    • 제33권1호
    • /
    • pp.165-171
    • /
    • 2020
  • In this paper we consider a mixed fractional Brownian motion (mfBm) with jumps. The prices of European barrier options can be evaluated by solving a partial integro-differential equation (PIDE) with variable coefficients, which is derived from the mfBm with jumps. The 2-step backward differentiation formula (BDF2 method) proposed in [6] is applied with the second-order convergence rate in the time and spatial variables. Numerical simulations are carried out to observe the convergence behaviors of the BDF2 method under the mfBm with the Kou model.

IMEX METHODS FOR PRICING FIXED STRIKE ASIAN OPTIONS WITH JUMP-DIFFUSION MODELS

  • Lee, Sunju;Lee, Younhee
    • East Asian mathematical journal
    • /
    • 제35권1호
    • /
    • pp.59-66
    • /
    • 2019
  • In this paper we study implicit-explicit (IMEX) methods combined with a semi-Lagrangian scheme to evaluate the prices of fixed strike arithmetic Asian options under jump-diffusion models. An Asian option is described by a two-dimensional partial integro-differential equation (PIDE) that has no diffusion term in the arithmetic average direction. The IMEX methods with the semi-Lagrangian scheme to solve the PIDE are discretized along characteristic curves and performed without any fixed point iteration techniques at each time step. We implement numerical simulations for the prices of a European fixed strike arithmetic Asian put option under the Merton model to demonstrate the second-order convergence rate.

피치 변화음의 합성을 위한 도파관 모델 (Pitch-shifted sound synthesis using digital waveguide model)

  • 조상진;강명수;정의필
    • 융합신호처리학회논문지
    • /
    • 제10권2호
    • /
    • pp.127-131
    • /
    • 2009
  • 디지털 도파관 모델은 파동 방정식의 일반해를 이용하여 진행파를 표현하고 이 진행파의 파동이동을 지연 라인으로 나타낸다. 일반적인 도파관 모델에서의 단일 지연은 샘플링 시간 간격을 의미하지만, 공간 기준 도파관 모델의 단일 지연은 샘플링된 공간의 거리를 의미한다. 이러한 차이점으로 인해 파동의 이동 거리를 직접적으로 조절할 수 있는 공간기준 도파관 모델이 비브라토 음과 같이 피치가 변하는 음을 합성할 수 있다고 알려져 있다. 본 논문에서는 지연라인의 길이의 비로서 피치가 변하는 음을 합성할 수 있는 시간 기준 디지털 도파관 모델을 제안하고 기존의 공간 기준 도파관 모델과의 성능을 비교하였다.

  • PDF