Browse > Article
http://dx.doi.org/10.12989/acd.2020.5.4.363

On mixing the Rayleigh-Ritz formulation with Hankel's function for vibration of fluid-filled functionally graded cylindrical shell  

Hussain, Muzamal (Department of Mathematics, Govt. College University Faisalabad)
Naeem, Muhammad Nawaz (Department of Mathematics, Govt. College University Faisalabad)
Shahzad, Aamir (Department of Physics, Govt. College University Faisalabad)
Taj, Muhammad (Department of Mathematics, University of Azad Jammu and Kashmir)
Asghar, Sehar (Department of Mathematics, Govt. College University Faisalabad)
Fatahi-Vajari, Alireza (Department of Mechanical Engineering, Shahryar Branch, Islamic Azad University)
Singh, Rahul (University Department of Mechanical Engineering, Rajasthan Technical University)
Tounsi, Abdelouahed (Materials and Hydrology Laboratory University of Sidi Bel Abbes, Algeria Faculty of Technology Civil Engineering Department)
Publication Information
Advances in Computational Design / v.5, no.4, 2020 , pp. 363-380 More about this Journal
Abstract
In this paper, a cylindrical shell is immersed in a non-viscous fluid using first order shell theory of Sander. These equations are partial differential equations which are solved by approximate technique. Robust and efficient techniques are favored to get precise results. Employment of the Rayleigh-Ritz procedure gives birth to the shell frequency equation. Use of acoustic wave equation is done to incorporate the sound pressure produced in a fluid. Hankel's functions of second kind designate the fluid influence. Mathematically the integral form of the Lagrange energy functional is converted into a set of three partial differential equations. Throughout the computation, simply supported edge condition is used. Expressions for modal displacement functions, the three unknown functions are supposed in such way that the axial, circumferential and time variables are separated by the product method. Comparison is made for empty and fluid-filled cylindrical shell with circumferential wave number, length- and height-radius ratios, it is found that the fluid-filled frequencies are lower than that of without fluid. To generate the fundamental natural frequencies and for better accuracy and effectiveness, the computer software MATLAB is used.
Keywords
Langrange functional; fluid-filled; MATLAB; Hankel's functions; Rayleigh-Ritz method;
Citations & Related Records
Times Cited By KSCI : 13  (Citation Analysis)
연도 인용수 순위
1 Gasser, L.F.F. (1987), "Free vibrations on thin cylindrical shells containing liquid", M.Sc. Dissertation, Federal University of Rio de Janerio, Rio de Janerio, Portugal.
2 Goncalves, P.B. and Batista, R.C. (1988), "Non-linear vibration analysis of fluid-filled cylindrical shells", J. Sound Vib., 127(1), 133-143. https://doi.org/10.1016/0022-460X(88)90354-9.   DOI
3 Goncalves, P.B., Da Silva, F.M.A. and Prado, Z.J.G.N. (2006), "Transient stability of empty and fluid-filled cylindrical shells", J. Braz. Soc. Mech. Sci. Eng., 28(3), 331-333. http://dx.doi.org/10.1590/S1678-58782006000300011.
4 Gonçalves, P.B., Silva, F. and del Prado, Z.J. (2006), "Transient stability of empty and fluid-filled cylindrical shells international symposium on dynamic problems of mechanics, J. Brazilian Society Mech. Sci. Eng., 28(3), 331-338. https://doi.org/10.1590/S1678-58782006000300011.
5 Hussain, M, Naeem, M.N. and Taj. M. (2019b), "Vibration characteristics of zigzag and chiral FGM rotating carbon nanotubes sandwich with ring supports", Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci., 233(16), 5763-5780. https://doi.org/10.1177/0954406219855095.   DOI
6 Hussain, M. and Naeem, M.N. (2017), "Vibration analysis of single-walled carbon nanotubes using wave propagation approach", Mech. Sci., 8(1),155-164. https://doi.org/10.5194/ms-8-155-2017.   DOI
7 Hussain, M., Naeem, M.N., Shahzad, A., He, M. and Habib, S. (2018b), "Vibrations of rotating cylindrical shells with functionally graded material using wave propagation approach", Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci., 232(23), 4342-4356. https://doi.org/10.1177/0954406218802320.   DOI
8 Hussain, M., Naeem, M.N., Tounsi, A. and Taj, M. (2019a), "Nonlocal effect on the vibration of armchair and zigzag SWCNTs with bending rigidity", Adv. Nano Res., 7(6), 431-442. https://doi.org/10.12989/anr.2019.7.6.431.   DOI
9 Shah, A.G., Mahmood, T. and Naeem, M.N. (2009), "Vibrations of FGM thin cylindrical shells with exponential volume fraction law", Appl. Math. Mech., 30(5), 607-615. https://doi.org/10.1007/s10483-009-0507-x.   DOI
10 Sharma, C.B. and Johns, D.J. (1971), "Vibration characteristics of a clamped-free and clamped-ringstiffened circular cylindrical shell", J. Sound Vib., 14(4), 459-474. https://doi.org/10.1016/0022-460X(71)90575-X.   DOI
11 Sharma, C.B., Darvizeh, M. and Darvizeh, A. (1998), "Natural frequency response of vertical cantilever composite shells containing fluid", Eng. Struct., 20(8), 732-737. https://doi.org/10.1016/S0141-0296(97)00102-8.   DOI
12 Sharma, P., Singh, R. and Hussain, M. (2019), "On modal analysis of axially functionally graded material beam under hygrothermal effect", Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci., 234(5), 1085-1101. https://doi.org/10.1177/0954406219888234.   DOI
13 Sodel, W. (1981), Vibration of Shell and Plates, Mechanical Engineering Series, New York, U.S.A.
14 Sofiyev, A.H. and Avcar, M. (2010), "The stability of cylindrical shells containing an FGM layer subjected to axial load on the Pasternak foundation", Eng., 2, 228-236. https://doi.org/10.4236/eng.2010.2403.   DOI
15 Sofiyev, A.H., Alizada, A.N., Akin, O., Valiyev, A., Avcar, M. and Adiguzel, S. (2012), "On the stability of FGM shells subjected to combined loads with different edge conditions and resting on elastic foundations", Acta Mech., 223(1), 189-204. https://doi.org/10.1007/s00707-011-0548-1.   DOI
16 Suresh, S. and Mortensen, A. (1997), "Functionally gradient metals and metal ceramic composites part 2: Thermo mechanical behavior", Int. Mater. Rev., 42(3), 85-116. https://doi.org/10.1179/imr.1997.42.3.85.   DOI
17 Lam, K.Y. and Loy, C.T. (1998), "Influence of boundary conditions for a thin laminated rotating cylindrical shell", Compos. Struct., 41, 215-228. https://doi.org/10.1016/S0263-8223(98)00012-9.   DOI
18 Jiang, J. and Olson, M.D. (1994), "Vibrational analysis of orthogonally stiffened cylindrical shells using super elements", J. Sound Vib., 173, 73-83. https://doi.org/10.1006/jsvi.1994.1218.   DOI
19 Khayat, M., Dehghan, S.M., Najafgholipour, M.A. and Baghlani, A. (2018), "Free vibration analysis of functionally graded cylindrical shells with different shell theories using semi-analytical method", Steel Compos. Struct., 28(6), 735-748. https://doi.org/10.12989/scs.2018.28.6.735.   DOI
20 Koizumi, M. (1997), "FGM activities in Japan", Compos. Part B, 28(1-2), 1-4. https://doi.org/10.1016/S1359-8368(96)00016-9.   DOI
21 Li, H., Pang, F., Du, Y. and Gao, C. (2019), "Free vibration analysis of uniform and stepped functionally graded circular cylindrical shells", Steel Compos. Struct., 33(2), 163-180. https://doi.org/10.12989/scs.2019.33.2.163.   DOI
22 Love, A.E.H. (1888), "The small free vibrations and deformation of a thin elastic shell", Philos. Trans. R. Soc. Lond. B Biol. Sci., 179, 491-546. https://doi.org/10.1098/rsta.1888.0016.
23 Loy, C.T. and Lam, K.Y. (1997), "Vibration of cylindrical shells with ring supports", J. Mech. Eng., 39, 455-471. https://doi.org/10.1016/S0020-7403(96)00035-5.
24 Hussain, M. and Naeem, M.N. (2018a), Advance Testing and Engineering, Intechopen, London, U.K.
25 Hussain, M. and Naeem, M.N. (2018b), Novel Nanomaterials: Synthesis and Applications, Intechopen, London, U.K. https://doi.org/10.5772/intechopen.73503.
26 Hussain, M. and Naeem, M.N. (2019a), "Effects of ring supports on vibration of armchair and zigzag FGM rotating carbon nanotubes using Galerkin's method", Compos. Part B Eng., 163, 548-561. https://doi.org/10.1016/j.compositesb.2018.12.144.   DOI
27 Hussain, M., Naeem, M., Shahzad, A. and He, M. (2017), "Vibrational behavior of single-walled carbon nanotubes based on cylindrical shell model using wave propagation approach", AIP Adv., 7(4), 045114. https://doi.org/10.1063/1.4979112.   DOI
28 Toulokian, Y.S. (1967), Thermophysical Properties of High Temperature Solid Materials, Macmillan, New York, U.S.A.
29 Hussain, M. and Naeem, M.N. (2019b), "Rotating response on the vibrations of functionally graded zigzag and chiral single walled carbon nanotubes", Appl. Math. Model., 75, 506-520. https://doi.org/10.1016/j.apm.2019.05.039.   DOI
30 Hussain, M. and Naeem, M.N. (2020), "Mass density effect on vibration of zigzag and chiral SWCNTs", J. Sandw. Struct. Mater., 1099636220906257. https://doi.org/10.1177/1099636220906257.
31 Hussain, M., Naeem, M.N and Tounsi, A. (2020), "Simulating vibration of single-walled carbon nanotube based on Relagh-Ritz Method", Adv. Nano Res., 8(3), 215-228. https://doi.org/10.12989/anr.2020.8.3.215.   DOI
32 Hussain, M., Naeem, M.N. and Isvandzibaei, M. (2018a), "Effect of Winkler and Pasternak elastic foundation on the vibration of rotating functionally graded material cylindrical shell", Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci., 232(24), 4564-4577. https://doi.org/10.1177/0954406217753459.   DOI
33 Hussain, M., Naeem, M.N. and Taj, M. (2019c), "Effect of length and thickness variations on the vibration of SWCNTs based on Flügge's shell model", Micro Nano Lett., 15(1), 1-6. https://doi.org/10.1049/mnl.2019.0309.   DOI
34 Arshad, S.H., Naeem, M.N. and Sultana, N. (2007), "Frequency analysis of functionally graded cylindrical shells with various volume fraction laws", J. Mech. Eng. Sci., 221, 1483-1495. https://doi.org/10.1243/09544062JMES738.   DOI
35 Asghar, S., Naeem, M.N. and Hussain, M. (2019), "Non-local effect on the vibration analysis of double walled carbon nanotubes based on Donnell shell theory", Physica E Low Dimens. Syst. Nanostruct., 116, 113726. https://doi.org/10.1016/j.physe.2019.113726.   DOI
36 Naeem, M.N., Ghamkhar, M., Arshad, S.H., and Shah, A.G. (2013), "Vibration analysis of submerged thin FGM cylindrical shells", J Mech. Sci. Technol., 27(3), 649-656. https://doi.org/10.1007/s12206-013-0119-6.   DOI
37 Loy, C.T., Lam, K.L. and Shu, C. (1997), "Analysis of cylindrical shells using generalized differential quadrature", Shock Vib., 4(3), 193-198. https://doi.org/10.3233/SAV-1997-4305.   DOI
38 Loy, C.T., Lam, K.Y. and Reddy, J.N. (1999), "Vibration of functionally graded cylindrical shells", Int. J. Mech. Sci., 41, 309-324. https://doi.org/10.1016/S0020-7403(98)00054-X.   DOI
39 Mercan, K., Demir, C. and Civalek, O. (2016), "Vibration analysis of FG cylindrical shells with power-law index using discrete singular convolution technique", Curved Layer. Struct., 3(1), 0007. https://doi.org/10.1515/cls-2016-0007.
40 Najafizadeh, M.M. and Isvandzibaei, M.R. (2007), "Vibration of (FGM) cylindrical shells based on higher order shear deformation plate theory with ring support", Acta Mech., 191, 75-91. https://doi.org/10.1007/s00707-006-0438-0.   DOI
41 Orsberg, K. (1964), "Influence of boundary conditions on modal characteristics of cylindrical shells", J. Amer. Institute Aeronautics Astronautics, 2, 182-189.
42 Rahimi, G.H., Ansari, R. and Hemmatnezhad, M. (2011), "Vibration of functionally graded cylindrical shells with ring support", Sci. Iran., 18(6), 1313-1320. https://doi.org/10.1016/j.scient.2011.11.026.   DOI
43 Sehar, A., Hussain, M., Naeem M.N. and Tounsi, A. (2020), "Prediction and assessment of nonlocal natural frequencies DWCNTs: Vibration analysis", Comput. Concrete, 25(2), 133-144. https://doi.org/10.12989/cac.2020.25.2.133.   DOI
44 Wuite, J. and Adali, S. (2005), "Deflection and stress behavior of nanocomposite reinforced beams using a multiscale analysis", Compos. Struct., 71(3-4), 388-96. https://doi.org/10.1016/j.compstruct.2005.09.011.   DOI
45 Wang, C. and Lai, J.C.S. (2000), "Prediction of natural frequencies of finite length circular cylindrical shells", Appl. Acoust., 59(4), 385-400. https://doi.org/10.1016/S0003-682X(99)00039-0.   DOI
46 Wang, C.M., Swaddiwudhipong, S. and Tian, J. (1997), "Ritz method for vibration analysis of cylindrical shells with ring-stiffeners", J. Eng. Mech., 123, 134-143. https://doi.org/10.1061/(ASCE)0733-9399(1997)123:2(134).   DOI
47 Warburton, G.B. (1965), "Vibration of thin cylindrical shells", J. Mech. Eng. Sci., 7, 399-407. https://doi.org/10.1243/JMES-JOUR-1965-007-062-02.   DOI
48 Xiang, Y., Ma, Y.F., Kitipornchai, S. and Lau, C.W.H. (2002), "Exact solutions for vibration of cylindrical shells with intermediate ring supports", Int. J. Mech. Sci., 44(9), 1907-1924. https://doi.org/10.1016/S0020-7403(02)00071-1.   DOI
49 Xuebin, L. (2008), "Study on free vibration analysis of circular cylindrical shells using wave propagation", J. Sound Vib., 311, 667-682. https://doi.org/10.1016/j.jsv.2007.09.023.   DOI
50 Zhang, X.M. (2002), "Parametric analysis of frequency of rotating laminated composite cylindrical shells with the wave propagation approach", Comput. Methods Appl. Mech. Eng., 191, 2057-2071. https://doi.org/10.1016/S0045-7825(01)00368-1.   DOI
51 Zhang, X.M., Liu, G.R. and Lam, K.Y. (2001), "Coupled vibration of fluid-filled cylindrical shells using the wave propagation approach", Appl. Acoust., 62, 229-243. https://doi.org/10.1016/S0003-682X(00)00045-1.   DOI
52 Farahani, H. and Barati, F. (2015), "Vibration of submerged functionally graded cylindrical shell based on first order shear deformation theory using wave propagation method", Struct. Eng. Mech., 53(3), 575-587. https://doi.org/10.12989/sem.2015.53.3.575.   DOI
53 Amabili, M. (1999), "Vibration of circular tubes and shells filled and partially immersed in dense fluids", J. Sound Vib., 221(4), 567-585. https://doi.org/10.1006/jsvi.1998.2050.   DOI
54 Amabili, M., Pellicano, F. and Paidoussis, M.P. (1998), "Nonlinear vibrations of simply supported, circular cylindrical shells, coupled to quiescent fluid", J. Fluids Struct., 12(7), 883-918. https://doi.org/10.1006/jfls.1999.0225.   DOI
55 Ansari, R. and Rouhi, H. (2015), "Nonlocal Flugge shell model for the axial buckling of single-walled carbon nanotubes: An analytical approach", Int. J. Nano Dimens., 6(5), 453-462. https://doi.org/10.7508/IJND.2015.05.002.
56 Fatahi-Vajari, A., Azimzadeh, Z. and Hussain, M., (2019), "Nonlinear coupled axial-torsional vibration of single-walled carbon nanotubes using Galerkin and homotopy perturbation method", Micro Nano Lett., 14(14), 1366-1371. https://doi.org/10.1049/mnl.2019.0203.   DOI
57 Flügge, W. (1962), Stresses in shells, Springer-Verlag, Berlin.
58 Chi, S.H. and Chung, Y.L. (2006), "Mechanical behavior of functionally graded material plates under transverse load-part II: Numerical results", Int. J. Solids Struct., 43, 3657-3691. https://doi.org/10.1016/j.ijsolstr.2005.04.010.   DOI
59 Avcar, M. (2019), "Free vibration of imperfect sigmoid and power law functionally graded beams", Steel Composite Struct., 30(6), 603-606. https://doi.org/10.12989/scs.2019.30.6.603.   DOI
60 Chen, Y., Zhao, H.B. and Shea, Z.P. (1993), "Vibrations of high-speed rotating shells with calculations for cylindrical shells", J. Sound Vib., 160, 137-160. https://doi.org/10.1006/jsvi.1993.1010.   DOI
61 Chung, H., Turula, P., Mulcahy, T.M. and Jendrzejczyk, J.A. (1981), "Analysis of cylindrical shell vibrating in a cylindrical fluid region", Nucl. Eng. Des., 63(1), 109-120. https://doi.org/10.1016/0029-5493(81)90020-0.   DOI
62 Dong, S.B. (1977), "A block-stodola eigen solution technique for large algebraic systems with nonsymmetrical matrices", Int. J. Number Methods Eng., 11, 247-267. https://doi.org/10.1002/nme.1620110204.   DOI
63 Ergin, A. and Temarel, P. (2002), "Free vibration of a partially liquid-filled and submerged, horizontal cylindrical shell", J. Sound Vib., 254(5), 951-965. https://doi.org/10.1006/jsvi.2001.4139.   DOI
64 Ersoy, H., Mercan, K. and Civalek, O. (2018), "Frequencies of FGM shells and annular plates by the methods of discrete singular convolution and differential quadrature methods", Composite Struct., 183, 7-20. https://doi.org/10.1016/j.compstruct.2016.11.051.   DOI
65 Sewall, J.L. and Naumann, E.C. (1968), An Experimental and Analytical Vibration Study of Thin Cylindrical Shells with and without Longitudinal Stiffeners, NASA, Washington D.C., U.S.A.