References
- Bouche, D., Ghidaglia, J.-M. and Pascal, F. (2005), "Error estimate and the geometric corrector for the upwind finite volume method applied to the linear advection equation", SIAM J. Numer. Anal., 43(2), 578-603. https://doi.org/10.1137/040605941.
- Burton, D.E., Morgan, N.R., Carney, T.C., and Kenamond, M.A. (2015), "Reduction of dissipation in Lagrange cell-centered hydrodynamics (CCH) through corner gradient reconstruction (CGR)", J. Comput. Phys., 299, 229-280. https://doi.org/10.1016/j.jcp.2015.06.041.
- DeBar, R. (1974), "Fundamentals of the KRAKEN code", Report UCIR-17366, Lawrence Livermore National Laboratory. https://doi.org/10.2172/7227630.
- Hamilton, B. and Bilbao, S. (2013), "On finite difference schemes for the 3-D wave equation using non-Cartesian grids", Proceedings of the Sound and Music Computing Conference, Stockholm, Sweden.
- Hirt, C.W., Amsden, A.A., and Cook, J.L. (1974), "An arbitrary Lagrangian-Eulerian computing method for all flow speeds", J. Comput. Phys., 14(3), 227-253. https://doi.org/10.1016/0021-9991(74)90051-5.
- Kumar, A. (2004), "Isotropic finite-differences", J. Comput. Phys., 201(1), 109-118. https://doi.org/10.1016/j.jcp.2004.05.005.
- Lung, T.B. and Roe, P.L. (2012), "Toward a reduction of mesh imprinting", Int. J. Numer. Methods Fluids, 76(7), 450-470. https://doi.org/10.1002/fld.3941.
- Potter, M.E., Lamoureux, M., and Nauta, M.D. (2011), "An FDTD scheme on a face-centered-cubic (FCC) grid for the solution of the wave equation", J. Comput. Phys., 18, 53-80. https://doi.org/10.1016/j.jcp.2011.04.027.
- Roe, P. (2017), "Multidimensional upwinding", Handbook of Numerical Analysis, 18, 53-80. https://doi.org/10.1016/bs.hna.2016.10.009.
- Salmasi, M. and Potter, M. (2018), "Discrete exterior calculus approach for discretizing Maxwell's equations on face-centered cubic grids for FDTD", J. Comput. Phys., 364, 298-313. https://doi.org/10.1016/j.jcp.2018.03.019.
- Terekhov, K.M., Mallison, B.T., and Tchelepi, H.A. (2017), "Cell-centered nonlinear finite-volume methods for the heterogeneous anisotropic diffusion problem", J. Comput. Phys., 330, 245-267. https://doi.org/10.1016/j.jcp.2016.11.010.
- Vazquez-Gonzalez, T. (2016), "Conservative and mimetic numerical schemes for compressible multiphase flows simulation", Ph.D. dissertation, Universite Paris-Saclay, France. https://www.theses.fr/2016SACLC051.
- Warming, R.F. and Hyett, B.J. (1974), "The modified equation approach to the stability and accuracy analysis of finite-difference methods", J. Comput. Phys., 14(2), 159-179. https://doi.org/10.1016/0021-9991(74)90011-4.
- Zohuri B. (2017), "Inertial Confinement Fusion Driven Thermonuclear Energy", Springer. https://doi.org/10.1007/978-3-319-50907-5.