Browse > Article
http://dx.doi.org/10.12989/sem.2020.75.6.747

Bending and free vibration analysis of laminated piezoelectric composite plates  

Zhang, Pengchong (School of Civil and Transportation Engineering, Beijing University of Civil Engineering and Architecture)
Qi, Chengzhi (School of Civil and Transportation Engineering, Beijing University of Civil Engineering and Architecture)
Fang, Hongyuan (College of Water Conservancy & Environmental Engineering, Zhengzhou University)
Sun, Xu (School of Civil and Transportation Engineering, Beijing University of Civil Engineering and Architecture)
Publication Information
Structural Engineering and Mechanics / v.75, no.6, 2020 , pp. 747-769 More about this Journal
Abstract
This paper provides a semi-analytical approach to investigate the variations of 3D displacement components, electric potential, stresses, electric displacements and transverse vibration frequencies in laminated piezoelectric composite plates based on the scaled boundary finite element method (SBFEM) and the precise integration algorithm (PIA). The proposed approach can analyze the static and dynamic responses of multilayered piezoelectric plates with any number of laminae, various geometrical shapes, boundary conditions, thickness-to-length ratios and stacking sequences. Only a longitudinal surface of the plate is discretized into 2D elements, which helps to improve the computational efficiency. Comparing with plate theories and other numerical methods, only three displacement components and the electric potential are set as the basic unknown variables and can be represented analytically through the transverse direction. The whole derivation is built upon the three dimensional key equations of elasticity for the piezoelectric materials and no assumptions on the plate kinematics have been taken. By virtue of the equilibrium equations, the constitutive relations and the introduced set of scaled boundary coordinates, three-dimensional governing partial differential equations are converted into the second order ordinary differential matrix equation. Furthermore, aided by the introduced internal nodal force, a first order ordinary differential equation is obtained with its general solution in the form of a matrix exponent. To further improve the accuracy of the matrix exponent in the SBFEM, the PIA is employed to make sure any desired accuracy of the mechanical and electric variables. By virtue of the kinetic energy technique, the global mass matrix of the composite plates constituted by piezoelectric laminae is constructed for the first time based on the SBFEM. Finally, comparisons with the exact solutions and available results are made to confirm the accuracy and effectiveness of the developed methodology. What's more, the effect of boundary conditions, thickness-to-length ratios and stacking sequences of laminae on the distributions of natural frequencies, mechanical and electric fields in laminated piezoelectric composite plates is evaluated.
Keywords
laminated piezoelectric composite plates; static bending responses; free vibration; the scaled boundary finite element method; the precise integration algorithm;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 Pendhari, S.S., Sawarkar, S., and Desai, Y.M. (2015), "2D semi-analytical solutions for single layer piezoelectric laminate subjected to electro-mechanical loading", Compos. Struct., 120, 326-333. https://doi.org/10.1016/j.compstruct.2014.10.018.   DOI
2 Plagianakos, T.S., and Papadopoulos, E.G. (2015), "Higher-order 2-D/3-D layerwise mechanics and finite elements for composite and sandwich composite plates with piezoelectric layers", Aerosp. Sci. Technol., 40, 150-163. https://doi.org/10.1016/j.ast.2014.10.015.   DOI
3 Rezaiee-Pajand, M., and Sadeghi, Y. (2013), "A bending element for isotropic, multilayered and piezoelectric plates", Lat. Am. J. Solids Struct., 10(2), 323-348. http://dx.doi.org/10.1590/S1679-78252013000200006.   DOI
4 Saravanos, D.A., Heyliger, P.R., and Hopkins, D.A. (1997), "Layerwise mechanics and finite element for the dynamic analysis of piezoelectric composite plates", Int. J. Solids Struct., 34(3), 359-378. https://doi.org/10.1016/S0020-7683(96)00012-1.   DOI
5 Saravanos, D.A., and Heyliger, P.R. (1999), "Mechanics and computational models for laminated piezoelectric beams, plates, and shells", Appl. Mech. Rev., 52(10), 305-320. https://doi.org/10.1115/1.3098918.   DOI
6 Sawarkar, S., Pendhari, S., and Desai, Y. (2016), "Semi-analytical solutions for static analysis of piezoelectric laminates", Compos. Struct., 153, 242-252. https://doi.org/10.1016/j.compstruct.2016.05.106.   DOI
7 Shiyekar, S.M., and Kant, T. (2011), "Higher order shear deformation effects on analysis of laminates with piezoelectric fibre reinforced composite actuators", Compos. Struct., 93(12), 3252-3261. https://doi.org/10.1016/j.compstruct.2011.05.016.   DOI
8 Singh, A.K., Chaki, M.S., Hazra, B., and Mahto, S. (2017), "Influence of imperfectly bonded piezoelectric layer with irregularity on propagation of Love-type wave in a reinforced composite structure", Struct. Eng. Mech., 62(3), 325-344. https://doi.org/10.12989/SEM.2017.62.3.325.   DOI
9 Garcao, J.S., Soares, C.M., Soares, C.M., and Reddy, J.N. (2004), "Analysis of laminated adaptive plate structures using layerwise finite element models", Comput. Struct., 82(23-26), 1939-1959. https://doi.org/10.1016/j.compstruc.2003.10.024.   DOI
10 Ghasemabadian, M.A., and Saidi, A.R. (2017), "Stability analysis of transversely isotropic laminated Mindlin plates with piezoelectric layers using a Levy-type solution", Struct. Eng. Mech., 62(6), 675-693. https://doi.org/10.12989/SEM.2017.62.6.675.   DOI
11 Hashemi, S.H., Es'haghi, M., and Karimi, M. (2010), "Closed-form solution for free vibration of piezoelectric coupled annular plates using Levinson plate theory", J. Sound Vibr., 329(9), 1390-1408. https://doi.org/10.1016/j.jsv.2009.10.043.   DOI
12 Heyliger, P. (1994), "Static behavior of laminated elastic/piezoelectric plates", AIAA J., 32(12), 2481-2484. https://doi.org/10.2514/3.12321.   DOI
13 Heyliger, P., and Brooks, S. (1995a), "Free vibration of piezoelectric laminates in cylindrical bending", Int. J. Solids Struct., 32(20), 2945-2960. https://doi.org/10.1016/0020-7683(94)00270-7.   DOI
14 Heyliger, P., and Saravanos, D.A. (1995b), "Exact free-vibration analysis of laminated plates with embedded piezoelectric layers", J. Acoust. Soc. Am., 98(3), 1547-1557. https://doi.org/10.1121/1.413420.   DOI
15 Kulikov, G.M., and Plotnikova, S.V. (2013), "Three-dimensional exact analysis of piezoelectric laminated plates via a sampling surfaces method", Int. J. Solids Struct., 50(11-12), 1916-1929. https://doi.org/10.1016/j.ijsolstr.2013.02.015.   DOI
16 Heyliger, P. (1997), "Exact solutions for simply supported laminated piezoelectric plates", J. Appl. Mech., 64(2), 299-306. https://doi.org/10.1115/1.2787307.   DOI
17 Heyliger, P.R., and Ramirez, G. (2000), "Free vibration of laminated circular piezoelectric plates and discs", J. Sound Vibr., 229(4), 935-956. https://doi.org/10.1006/jsvi.1999.2520.   DOI
18 Benjeddou, A. (2000) "Advances in piezoelectric finite element modeling of adaptive structural elements: a survey", Comput. Struct., 76(1-3), 347-363. https://doi.org/10.1016/S0045-7949(99)00151-0.   DOI
19 Khandelwal, R.P., Chakrabarti, A., and Bhargava, P. (2013), "An efficient hybrid plate model for accurate analysis of smart composite laminates", J. Intell. Mater. Syst. Struct., 24(16), 1927-1950. https://doi.org/10.1177/1045389X13486713.   DOI
20 Khandelwal, R.P., Chakrabarti, A., and Bhargava, P. (2014), "Static and dynamic control of smart composite laminates", AIAA J., 52(9), 1896-1914. https://doi.org/10.2514/1.J052666.   DOI
21 Kulikov, G.M., and Plotnikova, S.V. (2017), "Benchmark solutions for the free vibration of layered piezoelectric plates based on a variational formulation", J. Intell. Mater. Syst. Struct., 28(19), 2688-2704. https://doi.org/10.1177/1045389X17698241.   DOI
22 Lage, R.G., Soares, C.M., Soares, C.M., and Reddy, J. N. (2004), "Modelling of piezolaminated plates using layerwise mixed finite elements", Comput. Struct., 82(23-26), 1849-1863. https://doi.org/10.1016/j.compstruc.2004.03.068.   DOI
23 Li, B., Fang, H., He, H., Yang, K., Chen, C., and Wang, F. (2019), "Numerical simulation and full-scale test on dynamic response of corroded concrete pipelines under Multi-field coupling", Constr. Build. Mater., 200, 368-386. https://doi.org/10.1016/j.conbuildmat.2018.12.111.   DOI
24 Li, C., Song, C., Man, H., Ooi, E.T., and Gao, W. (2014), "2D dynamic analysis of cracks and interface cracks in piezoelectric composites using the SBFEM", Int. J. Solids Struct., 51(11-12), 2096-2108. https://doi.org/10.1016/j.ijsolstr.2014.02.014.   DOI
25 Song, C., and Wolf, J.P. (1997), "The scaled boundary finite-element method-alias consistent infinitesimal finite-element cell method-for elastodynamics", Comput. Meth. Appl. Mech. Eng., 147(3-4), 329-355. https://doi.org/10.1016/S0045-7825(97)00021-2.   DOI
26 Song, C. (2009), "The scaled boundary finite element method in structural dynamics", Int. J. Numer. Methods Eng., 77(8), 1139-1171. https://doi.org/10.1002/nme.2454.   DOI
27 Song, C., and Wolf, J.P. (1999), "The scaled boundary finite element method-alias consistent infinitesimal finite element cell method-for diffusion", Int. J. Numer. Methods Eng., 45(10), 1403-1431. https://doi.org/10.1002/(SICI)1097-0207(19990810)45:10<1403::AID-NME636>3.0.CO;2-E.   DOI
28 Song, C., and Wolf, J.P. (2000), "The scaled boundary finite-element method-a primer: solution procedures", Comput. Struct., 78(1-3), 211-225. https://doi.org/10.1016/S0045-7949(00)00100-0.   DOI
29 Song, C., and Vrcelj, Z. (2008), "Evaluation of dynamic stress intensity factors and T-stress using the scaled boundary finite-element method", Eng. Fract. Mech., 75(8), 1960-1980. https://doi.org/10.1016/j.engfracmech.2007.11.009.   DOI
30 Song, C., Tin-Loi, F., and Gao, W. (2010), "A definition and evaluation procedure of generalized stress intensity factors at cracks and multi-material wedges", Eng. Fract. Mech., 77(12), 2316-2336. https://doi.org/10.1016/j.engfracmech.2010.04.032.   DOI
31 Tanzadeh, H., and Amoushahi, H. (2019), "Buckling and free vibration analysis of piezoelectric laminated composite plates using various plate deformation theories", Eur. J. Mech. A-Solids, 74, 242-256. https://doi.org/10.1016/j.euromechsol.2018.11.013.   DOI
32 Torres, D.A.F., and Mendonca, P.T.R. (2010a), "Analysis of piezoelectric laminates by generalized finite element method and mixed layerwise-HSDT models", Smart Mater. Struct., 19(3), 035004. http://iopscience.iop.org/0964-1726/19/3/035004.   DOI
33 Torres, D.A.F., and Paulo de Tarso, R.M. (2010b), "HSDT-layerwise analytical solution for rectangular piezoelectric laminated plates", Compos. Struct., 92(8), 1763-1774. https://doi.org/10.1016/j.compstruct.2010.02.007.   DOI
34 Hosseini-Hashemi, S., Es'haghi, M., and Taher, H. R. D. (2010), "An exact analytical solution for freely vibrating piezoelectric coupled circular/annular thick plates using Reddy plate theory", Compos. Struct., 92(6), 1333-1351. https://doi.org/10.1016/j.compstruct.2009.11.006.   DOI
35 Kapuria, S. (2004), "A coupled zig-zag third-order theory for piezoelectric hybrid cross-ply plates", J. Appl. Mech., 71(5), 604-614. https://doi.org/10.1115/1.1767170.   DOI
36 Kapuria, S., and Kulkarni, S.D. (2008), "An efficient quadrilateral element based on improved zigzag theory for dynamic analysis of hybrid plates with electroded piezoelectric actuators and sensors", J. Sound Vibr., 315(1-2), 118-145. https://doi.org/10.1016/j.jsv.2008.01.053.   DOI
37 Kapuria, S., and Kulkarni, S.D. (2009), "Static electromechanical response of smart composite/sandwich plates using an efficient finite element with physical and electric nodes", Int. J. Mech. Sci., 51(1), 1-20. https://doi.org/10.1016/j.ijmecsci.2008.11.005.   DOI
38 Kapuria, S., Kumari, P., and Nath, J.K. (2010), "Efficient modeling of smart piezoelectric composite laminates: a review", Acta Mech., 214(1-2), 31-48. https://doi.org/10.1007/s00707-010-0310-0.   DOI
39 Vel, S.S., Mewer, R.C., and Batra, R.C. (2004), "Analytical solution for the cylindrical bending vibration of piezoelectric composite plates", Int. J. Solids Struct., 41(5-6), 1625-1643. https://doi.org/10.1016/j.ijsolstr.2003.10.012.   DOI
40 Torres, D.A.F., Paulo de Tarso, R.M., and De Barcellos, C.S. (2011), "Evaluation and verification of an HSDT-Layerwise generalized finite element formulation for adaptive piezoelectric laminated plates", Comput. Meth. Appl. Mech. Eng., 200(5-8), 675-691. https://doi.org/10.1016/j.cma.2010.09.014.   DOI
41 Vidal, P., Gallimard, L., and Polit, O. (2016), "Modeling of piezoelectric plates with variables separation for static analysis", Smart Mater. Struct., 25(5), 055043. https://doi.org/10.1088/0964-1726/25/5/055043.   DOI
42 Wang, J., and Yang, J. (2000), "Higher-order theories of piezoelectric plates and applications", Appl. Mech. Rev., 53(4), 87-99. https://doi.org/10.1115/1.3097341.   DOI
43 Wolf, J.P., and Song, C. (2000), "The scaled boundary finite-element method-a primer: derivations", Comput. Struct., 78(1-3), 191-210. https://doi.org/10.1016/S0045-7949(00)00099-7.   DOI
44 Wu, L., Jiang, Z., and Feng, W. (2004), "An analytical solution for static analysis of a simply supported moderately thick sandwich piezoelectric plate", Struct. Eng. Mech., 17(5), 641-654. https://doi.org/10.12989/SEM.2004.17.5.641.   DOI
45 Wu, N., Wang, Q., and Quek, S.T. (2010), "Free vibration analysis of piezoelectric coupled circular plate with open circuit", J. Sound Vibr., 329(8), 1126-1136. https://doi.org/10.1016/j.jsv.2009.10.040.   DOI
46 Li, J., Shi, Z., and Ning, S. (2017), "A two-dimensional consistent approach for static and dynamic analyses of uniform beams", Eng. Anal. Bound. Elem., 82, 1-16. https://doi.org/10.1016/j.enganabound.2017.05.009.   DOI
47 Benjeddou, A., and Deu, J.F. (2002a), "A two-dimensional closed-form solution for the free-vibrations analysis of piezoelectric sandwich plates", Int. J. Solids Struct., 39(6), 1463-1486. https://doi.org/10.1016/S0020-7683(01)00287-6.   DOI
48 Benjeddou, A., Deu, J.F., and Letombe, S. (2002b), "Free vibrations of simply-supported piezoelectric adaptive plates: an exact sandwich formulation", Thin-Walled Struct., 40(7-8), 573-593. https://doi.org/10.1016/S0263-8231(02)00013-7.   DOI
49 Bian, Z.G., Ying, J., Chen, W.Q., and Ding, H.J. (2006), "Bending and free vibration analysis of a smart functionally graded plate", Struct. Eng. Mech., 23(1), 97-113. https://doi.org/10.12989/sem.2006.23.1.097.   DOI
50 Li, G., Dong, Z.Q., and Li, H.N. (2018), "Simplified Collapse-Prevention Evaluation for the Reserve System of Low-Ductility Steel Concentrically Braced Frames", J. Struct. Eng., 144(7), 04018071. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002062.   DOI
51 Li, S., Huang, L., Jiang, L., and Qin, R. (2014), "A bidirectional B-spline finite point method for the analysis of piezoelectric laminated composite plates and its application in material parameter identification", Compos. Struct., 107, 346-362. https://doi.org/10.1016/j.compstruct.2013.08.007.   DOI
52 Lin, G., Zhang, P., Liu, J., and Li, J. (2018), "Analysis of laminated composite and sandwich plates based on the scaled boundary finite element method", Compos. Struct., 187, 579-592. https://doi.org/10.1016/j.compstruct.2017.11.001.   DOI
53 Liu, C.F., Chen, T.J., and Chen, Y.J. (2008), "A modified axisymmetric finite element for the 3-D vibration analysis of piezoelectric laminated circular and annular plates" J. Sound Vibr., 309(3-5), 794-804. https://doi.org/10.1016/j.jsv.2007.07.048.   DOI
54 Mackerle, J. (2003), "Smart materials and structures-a finite element approach-an addendum: a bibliography (1997-2002)", Model. Simul. Mater. Sci. Eng., 11(5), 707-744. https://doi.org/10.1088/0965-0393/11/5/302.   DOI
55 Man, H., Song, C., Gao, W., and Tin-Loi, F. (2012), "A unified 3D-based technique for plate bending analysis using scaled boundary finite element method", Int. J. Numer. Methods Eng., 91(5), 491-515. https://doi.org/10.1002/nme.4280.   DOI
56 Carrera, E., and Robaldo, A. (2010b), "Hierarchic finite elements based on a unified formulation for the static analysis of shear actuated multilayered piezoelectric plates", Multidiscipline Modeling in Mater. Struct., 6(1), 45-77. https://doi.org/10.1108/15736101011055266.   DOI
57 Man, H., Song, C., Xiang, T., Gao, W., and Tin-Loi, F. (2013), "High-order plate bending analysis based on the scaled boundary finite element method", Int. J. Numer. Methods Eng., 95(4), 331-360. https://doi.org/10.1002/nme.4519.   DOI
58 Birk, C., and Song, C. (2009), "A continued-fraction approach for transient diffusion in unbounded medium", Comput. Meth. Appl. Mech. Eng., 198(33-36), 2576-2590. https://doi.org/10.1016/j.cma.2009.03.002.   DOI
59 Carrera, E., and Nali, P. (2009), "Mixed piezoelectric plate elements with direct evaluation of transverse electric displacement", Int. J. Numer. Methods Eng., 80(4), 403-424. https://doi.org/10.1002/nme.2641.   DOI
60 Carrera, E., Buttner, A., and Nali, P. (2010a), "Mixed elements for the analysis of anisotropic multilayered piezoelectric plates", J. Intell. Mater. Syst. Struct., 21(7), 701-717. https://doi.org/10.1177/1045389X10364864.   DOI
61 Zhang, Z., Feng, C., and Liew, K.M. (2006), "Three-dimensional vibration analysis of multilayered piezoelectric composite plates", Int. J. Eng. Sci., 44(7), 397-408. https://doi.org/10.1016/j.ijengsci.2006.02.002.   DOI
62 Xiang, T., Natarajan, S., Man, H., Song, C., and Gao, W. (2014), "Free vibration and mechanical buckling of plates with in-plane material inhomogeneity-A three dimensional consistent approach", Compos. Struct., 118, 634-642. https://doi.org/10.1016/j.compstruct.2014.07.043.   DOI
63 Zhang, P., Qi, C., Fang, H., Ma, C., and Huang, Y. (2019), "Semi-analytical analysis of static and dynamic responses for laminated magneto-electro-elastic plates", Compos. Struct., 222, 110933. https://doi.org/10.1016/j.compstruct.2019.110933.   DOI
64 Zhang, P., Qi, C., Fang, H., and He, W. (2020), "Three dimensional mechanical behaviors of in-plane functionally graded plates", Compos. Struct., 112124. https://doi.org/10.1016/j.compstruct.2020.112124.
65 Zhong, W.X., Lin, J.H., and Gao, Q. (2004), "The precise computation for wave propagation in stratified materials", Int. J. Numer. Methods Eng., 60(1), 11-25. https://doi.org/10.1002/nme.952.   DOI
66 Ding H.J., Xu R.Q., Chi Y.W., and Chen W.Q. (1999), "Free axisymmetric vibration of transversely isotropic piezoelectric circular plates", Int. J. Solids Struct., 36(30), 4629-4652. https://doi.org/10.1016/S0020-7683(98)00206-6.   DOI
67 Cen, S., Soh, A.K., Long, Y.Q., and Yao, Z. H. (2002), "A new 4-node quadrilateral FE model with variable electrical degrees of freedom for the analysis of piezoelectric laminated composite plates", Compos. Struct., 58(4), 583-599. https://doi.org/10.1016/S0263-8223(02)00167-8.   DOI
68 Chen, D., Birk, C., Song, C., and Du, C. (2014), "A high-order approach for modelling transient wave propagation problems using the scaled boundary finite element method", Int. J. Numer. Methods Eng., 97(13), 937-959. https://doi.org/10.1002/nme.4613.   DOI
69 Cheung, Y.K., and Jiang, C.P. (2001), "Finite layer method in analyses of piezoelectric composite laminates", Comput. Meth. Appl. Mech. Eng., 191(8-10), 879-901. https://doi.org/10.1016/S0045-7825(01)00285-7.   DOI
70 Man, H., Song, C., Gao, W., and Tin-Loi, F. (2014), "Semi-analytical analysis for piezoelectric plate using the scaled boundary finite-element method", Comput. Struct., 137, 47-62. https://doi.org/10.1016/j.compstruc.2013.10.005.   DOI
71 Mauritsson, K., and Folkow, P.D. (2015), "Dynamic equations for a fully anisotropic piezoelectric rectangular plate", Comput. Struct., 153, 112-125. https://doi.org/10.1016/j.compstruc.2015.02.023.   DOI
72 Messina, A., and Carrera, E. (2015), "Three-dimensional free vibration of multi-layered piezoelectric plates through approximate and exact analyses", J. Intell. Mater. Syst. Struct., 26(5), 489-504. https://doi.org/10.1177/1045389X14529611.   DOI
73 Messina, A., and Carrera, E. (2016), "Three-dimensional analysis of freely vibrating multilayered piezoelectric plates through adaptive global piecewise-smooth functions", J. Intell. Mater. Syst. Struct., 27(20), 2862-2876. https://doi.org/10.1177/1045389X16642303.   DOI
74 Moleiro, F., Soares, C.M., Soares, C.M., and Reddy, J.N. (2012), "Assessment of a layerwise mixed least-squares model for analysis of multilayered piezoelectric composite plates", Comput. Struct., 108, 14-30. https://doi.org/10.1016/j.compstruc.2012.04.002.   DOI
75 Moleiro, F., Soares, C.M., Soares, C.M., and Reddy, J.N. (2014), "Benchmark exact solutions for the static analysis of multilayered piezoelectric composite plates using PVDF", Compos. Struct., 107, 389-395. https://doi.org/10.1016/j.compstruct.2013.08.019.   DOI
76 Moleiro, F., Soares, C.M., Soares, C.M., and Reddy, J. N. (2015), "Layerwise mixed models for analysis of multilayered piezoelectric composite plates using least-squares formulation", Compos. Struct., 119, 134-149. https://doi.org/10.1016/j.compstruct.2014.08.031.   DOI
77 Akhras, G., and Li, W.C. (2007), "Three-dimensional static, vibration and stability analysis of piezoelectric composite plates using a finite layer method", Smart Mater. Struct., 16(3), 561-569. http://dx.doi.org/10.1088/0964-1726/16/3/002.   DOI
78 Moleiro, F., Araujo, A.L., and Reddy, J.N. (2017), "Benchmark exact free vibration solutions for multilayered piezoelectric composite plates", Compos. Struct., 182, 598-605. https://doi.org/10.1016/j.compstruct.2017.09.035.   DOI
79 Duan, W.H., Quek, S.T., and Wang, Q. (2005), "Free vibration analysis of piezoelectric coupled thin and thick annular plate", J. Sound Vibr., 281(1-2), 119-139. https://doi.org/10.1016/j.jsv.2004.01.009.   DOI
80 Dube, G.P., Upadhyay, M.M., Dumir, P.C., and Kumar, S. (1998), "Piezothermoelastic solution for angle-ply laminated plate in cylindrical bending", Struct. Eng. Mech., 6(5), 529-542. https://doi.org/10.12989/SEM.1998.6.5.529.   DOI
81 Akhras, G., and Li, W.C. (2007), "Three-dimensional static, vibration and stability analysis of piezoelectric composite plates using a finite layer method", Smart Mater. Struct., 16(3), 561-569. http://dx.doi.org/10.1088/0964-1726/16/3/002.   DOI
82 Akhras, G., and Li, W.C. (2011), "Stability and free vibration analysis of thick piezoelectric composite plates using spline finite strip method", Int. J. Mech. Sci., 53(8), 575-584. http://dx.doi.org/10.1016/j.ijmecsci.2011.05.004.   DOI
83 Askari, M., Saidi, A.R., and Rezaei, A.S. (2018), "An investigation over the effect of piezoelectricity and porosity distribution on natural frequencies of porous smart plates", J. Sandwich Struct. Mater.. http://dx.doi.org/10.1177/1099636218791092.
84 Baghaee, M., Farrokhabadi, A., and Jafari-Talookolaei, R.A. (2019), "A solution method based on Lagrange multipliers and Legendre polynomial series for free vibration analysis of laminated plates sandwiched by two MFC layers", J. Sound Vibr., 447, 42-60. https://doi.org/10.1016/j.jsv.2019.01.037.   DOI
85 Balamurugan, V., and Narayanan, S. (2007), "A piezoelectric higher-order plate element for the analysis of multi-layer smart composite laminates", Smart Mater. Struct., 16(6), 2026-2039. http://dx.doi.org/10.1088/0964-1726/16/6/005.   DOI