• 제목/요약/키워드: Schrodinger operator

검색결과 17건 처리시간 0.025초

EXISTENCE OF RESONANCES FOR DIFFERENTIAL OPERATORS

  • Kim, In-Suk
    • 대한수학회논문집
    • /
    • 제9권2호
    • /
    • pp.337-353
    • /
    • 1994
  • Let H be a Schrodinger operator in $L^2$(R) H =(equation omitted) + V(x), with supp V ⊂ [-R, R]. A number $z_{0}$ / in the lower half-plane is called a resonance for H if for all $\phi$ with compact support 〈$\phi$, $(H - z)^{-l}$ $\phi$〉 has an analytic continuation from the upper half-plane to a part of the lower half-plane with a pole at z = $z_{0}$ . Thus a resonance is a sort of generalization of an eigenvalue. For Im k > 0, ($H - k^2$)$^{-1}$ is an integral operator with kernel, given by Green's function(omitted)

  • PDF

REGULARITY OF THE GENERALIZED POISSON OPERATOR

  • Li, Pengtao;Wang, Zhiyong;Zhao, Kai
    • 대한수학회지
    • /
    • 제59권1호
    • /
    • pp.129-150
    • /
    • 2022
  • Let L = -∆ + V be a Schrödinger operator, where the potential V belongs to the reverse Hölder class. In this paper, by the subordinative formula, we investigate the generalized Poisson operator PLt,σ, 0 < σ < 1, associated with L. We estimate the gradient and the time-fractional derivatives of the kernel of PLt,σ, respectively. As an application, we establish a Carleson measure characterization of the Campanato type space 𝒞𝛄L (ℝn) via PLt,σ.

ESTIMATES FOR THE RIESZ TRANSFORMS ASSOCIATED WITH SCHRÖDINGER TYPE OPERATORS ON THE HEISENBERG GROUP

  • Wang, Yanhui
    • 대한수학회보
    • /
    • 제59권5호
    • /
    • pp.1255-1268
    • /
    • 2022
  • We consider the Schrödinger type operator 𝓛 = (-𝚫n)2 + V2 on the Heisenberg group ℍn, where 𝚫n is the sub-Laplacian and the non-negative potential V belongs to the reverse Hölder class RHs for s ≥ Q/2 and Q ≥ 6. We shall establish the (Lp, Lq) estimates for the Riesz transforms T𝛼,𝛽,j = V2𝛼𝛁jn𝓛-𝛽, j = 0, 1, 2, 3, where 𝛁n is the gradient operator on ℍn, 0 < α ≤ 1-j/4, j/4 < 𝛽 ≤ 1, and 𝛽 - 𝛼 ≥ j/4.

TWO-WEIGHT NORM ESTIMATES FOR SQUARE FUNCTIONS ASSOCIATED TO FRACTIONAL SCHRÖDINGER OPERATORS WITH HARDY POTENTIAL

  • Tongxin Kang;Yang Zou
    • 대한수학회보
    • /
    • 제60권6호
    • /
    • pp.1567-1605
    • /
    • 2023
  • Let d ∈ ℕ and α ∈ (0, min{2, d}). For any a ∈ [a*, ∞), the fractional Schrödinger operator 𝓛a is defined by 𝓛a := (-Δ)α/2 + a|x|, where $a^*:={\frac{2^{\alpha}{\Gamma}((d+{\alpha})/4)^2}{{\Gamma}(d-{\alpha})/4)^2}}$. In this paper, we study two-weight Sobolev inequalities associated with 𝓛a and two-weight norm estimates for several square functions associated with 𝓛a.

HARDY TYPE ESTIMATES FOR RIESZ TRANSFORMS ASSOCIATED WITH SCHRÖDINGER OPERATORS ON THE HEISENBERG GROUP

  • Gao, Chunfang
    • 대한수학회지
    • /
    • 제59권2호
    • /
    • pp.235-254
    • /
    • 2022
  • Let ℍn be the Heisenberg group and Q = 2n + 2 be its homogeneous dimension. Let 𝓛 = -∆n + V be the Schrödinger operator on ℍn, where ∆n is the sub-Laplacian and the nonnegative potential V belongs to the reverse Hölder class $B_{q_1}$ for q1 ≥ Q/2. Let Hp𝓛(ℍn) be the Hardy space associated with the Schrödinger operator 𝓛 for Q/(Q+𝛿0) < p ≤ 1, where 𝛿0 = min{1, 2 - Q/q1}. In this paper, we consider the Hardy type estimates for the operator T𝛼 = V𝛼(-∆n + V )-𝛼, and the commutator [b, T𝛼], where 0 < 𝛼 < Q/2. We prove that T𝛼 is bounded from Hp𝓛(ℍn) into Lp(ℍn). Suppose that b ∈ BMO𝜃𝓛(ℍn), which is larger than BMO(ℍn). We show that the commutator [b, T𝛼] is bounded from H1𝓛(ℍn) into weak L1(ℍn).

Coherent Control of Autler-Townes Splitting in Photoelectron Spectroscopy: The Effect of Laser Intensity and Laser Envelope

  • Qin, Chaochao;Zhai, Hongsheng;Zhang, Xianzhou;Liu, Yufang
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권11호
    • /
    • pp.3294-3298
    • /
    • 2014
  • We theoretically investigated the coherent control of Autler-Townes splitting in photoelectron spectroscopy of K2 molecule within an ultrafast laser pulse by solving the time-dependent Schrodinger equation using a quantum wave packet method. It was theoretically shown that we can manipulate the splitting of photoelectron spectroscopy by altering the laser intensity. Furthermore, it was found that the percentages of each peak in photoelectron spectroscopy can be controlled by changing the envelope of the laser pulse.

NUMERICAL SOLUTIONS FOR ONE AND TWO DIMENSIONAL NONLINEAR PROBLEMS RELATED TO DISPERSION MANAGED SOLITONS

  • Kang, Younghoon;Lee, Eunjung;Lee, Young-Ran
    • 대한수학회지
    • /
    • 제58권4호
    • /
    • pp.835-847
    • /
    • 2021
  • We study behavior of numerical solutions for a nonlinear eigenvalue problem on ℝn that is reduced from a dispersion managed nonlinear Schrödinger equation. The solution operator of the free Schrödinger equation in the eigenvalue problem is implemented via the finite difference scheme, and the primary nonlinear eigenvalue problem is numerically solved via Picard iteration. Through numerical simulations, the results known only theoretically, for example the number of eigenpairs for one dimensional problem, are verified. Furthermore several new characteristics of the eigenpairs, including the existence of eigenpairs inherent in zero average dispersion two dimensional problem, are observed and analyzed.