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REGULARITY OF THE GENERALIZED
POISSON OPERATOR

PENGTAO L1, ZHIYONG WANG, AND KAI ZHAO

ABSTRACT. Let L = —A + V be a Schrédinger operator, where the po-
tential V' belongs to the reverse Holder class. In this paper, by the sub-
ordinative formula, we investigate the generalized Poisson operator PtL’U7
0 < o < 1, associated with L. We estimate the gradient and the time-

fractional derivatives of the kernel of PtL’U, respectively. As an application,

we establish a Carleson measure characterization of the Campanato type
space C} (R™) via PL,.

1. Introduction

The fractional powers of the Laplace operator (—A)*,0 < a < 1, which is
defined via the Fourier transform as

(CA)eu(t, €) = €A, €),

play a significant roles in many areas of mathematics, such as, harmonic analy-
sis and PDEs. Due to the salient significance and backgrounds in mathematical
physics, the fractional Laplacian (—A)® has also been applied to study a wide
class of physical systems and engineering problems, including Lévy flights, sto-
chastic interfaces and anomalous diffusion problems. It is well known that the
fractional Laplacian is a nonlocal operator and local PDE techniques can not
be applied to deal with nonlinear problems for (—A)?. To overcome this dif-
ficulty, Caffarelli and Silvestre showed in [2] that if u(z,y) : R7T" — Ris a
solution to the boundary value problem:

Azu+ %uy +uyy =0, (z,9) € R” x(0,00);
u(z,0) = f(z), r € R,
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then up to a multiplicative constant depending only on o,

= lim gy (2,y) = (-A)7 /().

This characterization of (—A)? f via the above local (degenerate) PDE was used
for the first time in [1] to get regularity estimates for the obstacle problem for
the fractional Laplacian. Caffarelli and Silvestre noted that the above equation
can be thought as the harmonic extension of f in 2 — 20 dimensions more (see
[1]). From there, they established the fundamental solution and a Poisson
formula for w via a conjugate equation. Furthermore, taking advantage of the
general theory of degenerate elliptic equations developed by Fabes et al. in
1982-1983, Harnack’s estimates for u and for f were proved, respectively.

Recently, the results of [1,2] were further generalized to other differential
operators. Let O be an open subset of R”, n > 1 and o € (0,1). In [18], P.
Stinga and J. Torrea investigated the following extension problem:

u(z,0) = f(z), z € O

1 1-2
S —qu—l—Tauy—&—uyy:O, (z,y) € O x (0,00).

The authors proved that any fractional power L? can be described as an op-
erator that maps a Dirichlet condition to a Neumann-type condition via an
extension problem as in [2]. Also, if w is a solution to (1), then u can be
represented via the following Poisson formula:

]. o0 y2 d’l”

&) wew) = o [T FHN@ AT = PL).
Specially, for o = 1/2, (2) is exactly the Poisson semigroup related with L,
ie., u(z,y) = e ¥VE(f)(z). Based on this understanding, we call PE, the
generalized Poisson operator related with L.

In this paper, our purpose is to investigate the regularities of generalized
Poisson operators related with Schrodinger operators which is defined as fol-
lows.

L(f)(z) = (=Af)(x) + V() (),

where —A is the Laplace operator: —A = —3" | 68—; and V(z) is a non-
negative potential belonging to the reverse Hoélder class By, i.e., for every ball

B,
1/q
<—|;|/Bvq(x)dx) <|g|/BV(w)dw~

In recent years, due to the background of the quantum mechanics, in the fields
of partial differential equations and mathematical physics, more and more schol-
ars are interested in the study of nonlinear problems involving fractional powers
of the Schrédinger operator L7, 0 < o < 1, we refer the reader to [5,9].
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In order to estimate the kernel of Pt ., we notice that the integral kernel of

the Poisson semigroup associated with L can be expressed as

L et o
= —K d
Dy (‘rvy) /O \/ﬂ t2/4u(x7y) U,

where K}(-,-) denotes the integral kernel of e~*% i.e.,

(D)= | K@ )f)dy.
In this manner, it can be deduced from (2) that the kernel PtLG, denoted by
ptL’U(~7 -), can be represented via the subordinate formula:

1 o dr
L _ —r gL
(3) pt,a<x7y) - m/o e t2/4'r(‘rvy)7d17,g7

which enables us to deduce the regularity properties of pf’g(~7 -) via the heat
kernel K% (-,-), see Proposition 3.3. Let V denote the gradient operator on
R™, that is, V = (V,,0;), where V, = (9/0x1,...,0/0x,). By the aid of
the results obtained in [5], we use the subordinative formula (3) and a direct
calculation to obtain the regularity of Vzpﬁg(~, *), see Proposition 3.6.

In Section 3.2, we investigate the time-fractional derivatives of p£0(~, -), since
time-fractional operators are proved to be very useful for modeling purpose. Let
Z denote the set of all positive integers. For a > 0 and k € Z, define

Lo‘ ana L —17rk ()é) adu
D (.’E y) =t 816 pt7a(xay> atpt+ug x y) ;, a>0.

In order to estimate Dt{’ 27(+,+), in Proposition 3.4, we first investigate the reg-
ularities of t*0fpf,(-,-), k € Zy. The regularity estimates of DtL,(’f(-, -) can be
deduced from Proposition 3.4 and the functional calculus, see Proposition 3.7.

As an application, in Section 4, we use the generalized Poisson semigroup
{Pt{}}»o to characterize the Campanato type spaces associated to L denoted
by C}(R™). In the last decades, the study of function spaces associated with
Schrédinger operators has inspired great interest, for example, square functions
characterizations for Hardy spaces [8], Carleson measure characterizations for
BMO spaces [7] and Morry-Campanato spaces [5]. For further information on
this topic, we refer to [3,4,6,9,11,12,14,17,19-21] and the references therein.
By the regularity estimates obtained in Section 3, we establish the following
equivalent characterizations: for 0 < v < min{2c,2a0},

feCi(R") ~ sup B|1+2'y/n/ / ‘taaaPL (@)

da:dt
2
Nsup B|1+27/"/ / tVPE (f)(x)]?—— < oo,

see Theorems 4.6 and 4.7, respectively.

dzdt
|2x < 00
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Remark 1.1. We point out that our regularity results obtained in Section 3 are
new and generalize the former results obtained by several authors. Specially, if
o = 1/2, the estimation of t*9®e*VL(-,.) is consistent with the results of Ma-

Stinga-Torrea-Zhang [15, Proposition 3.6], and the estimation of tVye *VL(-,")
comes back to [5, Lemma 3.9].

Notations. In the sequel, we always assume that dp = 2 — n/q and § =
min{2a0c, 20,50 }. We will use ¢ and C to denote the positive constants, which
are independent of main parameters and may be different at each occurrence.
By B; ~ By, we mean that there exists a constant C' > 1 such that C~! <
B;/By < C.

2. Preliminaries

Let the auxiliary function p(z, V) = p(x) (cf. [16]) is defined as

1
p(x) := sup {r >0: pr— /B( )V(y)dy < 1}.
.y

Lemma 2.1 ([16, Lemma 1.2]).
(i) For0<r < R < o0,

1 / r\0 1
V(y)dy < C|(—= / V(y)dy.
T2 | Bz ) <R) R"2 Jp(.R) )

(i) If r = p(x), then r2>—™ fB(I » V{y)dy = 1. Moreover, r ~ p(x) if and
only if r2—" fB(x,T) V(y)dy ~ 1.
Lemma 2.2 ([16, Lemma 1.4]).
(i) There exist C > 0 and ko > 1 such that for all x,y € R",
—ko
Clp@)(1+ [z —l/pl@)) < ply) < Cp(e) (1+ | = yl/p(a)

In particular, p(y) ~ p(z) if |x —y| < Cp(x).
(ii) There exists lo > 1 such that

V(y) C / R \lo
dy < Viyydy <Cl1+——) .
/B(x,R) |z —y["—2 R"2 Jp(a.R) @) ( P(l‘))

Let f be a locally integrable function on R™ and B = B(z,r) be a ball.
Denote by fp the mean of f on B, i.e., fg = |B|™! fB f(y)dy. Let

et

>k0/(1+k0)

Definition. Let 0 < v < 1. The Campanato type space C} (R") is defined as
the set of all locally integrable functions f satisfying

1
Hf”cz = ;gﬂlg {W/B |f(z)— f(B,V)|da:} < 0.



REGULARITY OF THE GENERALIZED POISSON OPERATOR 133

Proposition 2.3 ([15, Proposition 4.3]). Let B = B(x,r) with r < p(x). If
f € ClR™), 0 <~ <1, then there exists a constant C' such that |fp| <
Cp(@)" I flle; -

The space C] (R™) is equivalent to the following Lipschitz type space related
to L.

Definition. For 0 < v < 1, a continuous function f defined on R™ belongs to
the space )7 (R") if

@) — f(y)| ) (@)
e ey A e e

< 0

Proposition 2.4 ([15, Proposition 4.6]). If 0 <~ <1, then the space C} (R™)
equals to C)"(R™) and their norms are equivalent.

The Hardy type spaces H7 (R™), 0 < p < 1, are defined by the maximal
function generated by the semigroup {e~*L};~¢. Let M, denote the semigroup
maximal function, i.e.,

ML(f)(z) = sup|T} f(2)], = € R".
>0

An integrable function f is an element of the Hardy type space H (R™) if the
maximal function My (f)(z) belongs to LP(R™). The quasi-norm in H? (R") is
defined by

1l = IML(f)] 2o

Similar to the classical Hardy spaces, the atom of H} (R™) is defined as follows.

Definition. Let n/(n+d) < p <1 < ¢ < oo with p # ¢. A function a is called
an H7%-atom related to a ball B(zg,rg) if

(i) supp a C B(xo,7B);

(ii) llall Lo < |B(xo,rp)["/71/7;

(iii) if rp < p(mg)/4, then fB(IO’TB) a(y)dy = 0.
The atomic norm of HY (R™) is defined by Hf”Hg*‘?-atom = inf{(3 |¢;|P) /7Y,
where the infimum is taken over all decompositions f = Yc;a;, and a; are
HP-atoms.

Proposition 2.5 ([15, Theorem 4.5]). Let 0 < v < 1. The dual space of
HZ/“HV) (R™) is C} (R™). More precisely, any continuous linear functional ®

over HZ/(n+7)(]R") can be represented as

D(a) = o f(@)a(x)dx

or some function f € CY(R™) and all HY " _atoms a. Moreover, the oper-
L L
ator norm [|®|[op ~ || fllcy -
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3. Regularities of the generalized Poisson semigroups

By the fundamental solution of Schrodinger operators, J. Dziubanski and J.
Zienkiewicz in [7] obtained the following estimates of K[ (-, ).

Proposition 3.1 ([7, Theorems 4.10 & 4.11]).

(i) For any M > 0, there exist constants Cpr,c > 0 such that
N ﬁ)‘
p(z) ~ p(y)

(ii) Assume that 0 < 6 < min{l,do}. For any M > 0, there exist constants
Chr,c > 0 such that for all |h| < V/t,

|K15L(5573/)| < CMt_n/Qe_c‘l’—ylz/t (1 +

LV vy

KtL($+h’y)—KtL(x,y)’ < Cum (L/') /2 —cl—yl /t( Lo

For k € Z,, define
Qé,t(xv y) = t2ka§K§'(CE, y)'s:tz'
In [10], Huang-Li-Liu proved the following estimates about the kernel
ng,t(’v )
Proposition 3.2 ([10, Proposition 3.3]).
(i) For any M > 0, there exist constants Car,c > 0 such that
2 /42 t t -M
Qr (x,y)‘ < Oyt e clemyl™/t (1 +—+ —) .
ok p(z) " p(y)

(ii) Assume that 0 < 61 < min{1,do}. For any M > 0, there exist constants
Ch,c > 0 such that for all |h| <Vt

‘th (@+h,y) — QF,(x, y)‘ <Cu (| |> t—ne—cz—y|2/t2(1—|—t—|—t))M.

plz) ~ ply
(iii) For any M > 0, there exists a constant Car > 0 such that
Cu(t/p(x))
Qk4(x,y dy‘
’ e el (1 +t/p(x))™

Now we investigate the regularities of p50(~, -). At first, we get the following
estimates:

Proposition 3.3. Let 0 < o < 1.
(i) For M > 0, there exists a constant Cpy > 0 such that

Cpt?e ( \/| —y|? + 2 \/|x—y|2+t2)—
(12 + & — y[2)n/2He p(z) p(y)

Pt (2, y)| <
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(ii) Let 0 < 61 < min(20,0¢). For any M > 0 there exists a constant
Cr > 0 such that for all |h| < t,

h o1 t2o’
|ptL,a(x + h7y) _pt[:a(xvy)‘ S CIVI( | | ) (

VE+z—yP/ 2+ |z —yl)n/2re
_ 2 t2 _ 2 t2 —M

X<1+\/Iﬂ~" yl? + Ve =y + ) .
p(z) p(y)

Proof. For (i), by the subordinative formula (3) and (i) of Proposition 3.1, we
can get

Pt (,y)]

SR dr
SC/ e |KtL2/4r(37»y)\T17,U

0
e 242 \/t2/4 V12 )dr\ —M
< C/ e—r(t2/4r)—n/2e—c\x—y| r/t (1+ / r + / T) dr
0

p(z) r(y) riee
oo
< Ct_n_2Mp(x)Mp(y)M/ e—cr(1+|m—y\2/t2)rn/2+M+0—1dr.
0

Letting r(1 + |I;72y|2) = u, we obtain
Pt (2, y)]

oo
< Ct_n_QIVIp(l')Mp(y)M(l + ‘l‘ _ y|2/t2)—n/2—M—U/ e—cuun/2+M+o—1du
0

t20‘ T — 2+t2 T — 2+t2 —M
<o — (H\/I yl L Vie—y] ) .
(t2 + |z — y|?)n/2+e p(z) p(y)
For (ii), similar to the proof of (i), we can use (ii) of Proposition 3.1 to obtain
the desired result. So the details are omitted. O

For k € Z4 and t > 0, define ijf(:ay) = t*0fpf,(x,y). We can get the
following estimates about the kernel D£ ()
Proposition 3.4.
(i) For M > 0, there exists a constant Cpy > 0 such that
DE )] < oy o (1 VOl YRl gy
’ (2 + |z — y[2)n/2te p() p(y)

(ii) Let 0 < § < min(20,00). For any M > 0, there exists a constant
Ch > 0 such that, for all |h| < t,

o o h 5 $20
D (x4 hyy) — D, (fc,y)‘SCM( 1A ) (

VE+z—y2/ (82 + |z —y|2)n/2te
t2 _ 2 t2 _ 2\ —-M
><<1+\/ + Ja y\+\/ + [z yl) .
p(x) p(y)
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(ili) For any M > 0, there exists a constant Cpr > 0 such that

1.6
’/D xydy‘<0 %

Proof. For (i), it is easy to see that

dr
latkpta T y ‘C/ Kt2/4r(x y) o |

Then we first recall that the higher-order derivative formula of the composite
function: if y = f(u) and v = ¢(x), then

8mk Z pk: z f(l )

where py, () :ZZ;%)( 1)°Csu?® Ikuz s,
So, let f(u) = e “L and u = ¢?/4r, we obtain

ok ok
o —C t21 k 7KL .
otk tz/4r * y Z otk ( y) s=t2/4r
Then, we use Proposition 3.2(i) to deduce that
ak
dr

k .
o0 . i 61
<y | / e—rt%—k(wl@fﬁ(m,y)

< Opt™ ’“Z/

< Cpt~ k/ (t2/47") n/2670\17y|2r/t2
0

s=t2/ar r1=0

i dr
VL ()| 5

x(l—i— t t )*M dr

)
rENG oG
< Oyt P 2M p ()M p(y)M /Oo e—cr(Itlz—y[?/t%), /24 M+o—1 4.

,r.lfcr

Letting r(1 + | — y|?/t?) = u, we can get
8k
Wpf,a(l",y)‘
oo n/2+M+o—1
< Of—k—n—2M M M/ —cu u )
< p()™ p(y) S G prarcy7e
du
x 2 /42
T+ - y7/8)
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< C2opkp—20-n—2M (1 tlz— y|2/t2)—n/2—M—ap(x)Mp(y)M
C2o—k (1+ \/152—|—|33—y|2 N \/t2—|—\:z:—y|2)—M
T (824 |z -yt p(x) p(y) '
So we can obtain
Okl (. y)|
Cut* ( L VBl \/t2+\w—y|2>*M
T (12 + |w -y p(z) p(y) '

(ii) Similar to (i), the statement (ii) can be deduced from (ii) of Proposition
3.2, we omit the details.
For (iii), since
oF o <, dr
tk@pteg(aj,y) :tkw(/o e #/4T(x’y)fr.1770)

k
<, dr
:C’ME /0 e Qf\/m(z»y)rli_gy
i=1

using (iii) of Proposition 3.2, we can get
o dr
L, - L
Dt,;f(a?,y)dy‘ < C/O e” . Q JErm YW

= (PN dr
e A+ V& NV T

.

Case 1: t > p(x). We obtain

| [ Dl wady| < 0o @0 [ ersiteeigy
R® 0
(t/p(x))°
T (L t/pla))M
Case 2: t < p(x). We can get

00 /72 5
Dtl;l,:'(x7y)dy‘ S O/O e—r( t /4T> d’l"

’ Rn

plx) / ri=e
L s Ooe—r,r—(s o—1 r
<o) T
(t/p(x))°
= T tpa)™ O

3.1. Estimation on the spatial gradient

In this section, we investigate the spatial gradient of p£0(~, -). For the spe-
cial case 0 = 1/2, i.e., the Poisson kernel, the regularity estimates have been
obtained in [5, Lemma 3.9].
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Lemma 3.5. Suppose V € B, for some ¢ > n. Let 61 =1 —n/q. For every
M > 0, there exist constants Cpy > 0 and ¢ > 0 such that for oll x,y € R"™ and
t > 0, the semigroup kernels K (z,y) associated to e~'L, satisfy the following

estimates:
t t\—M
IV KE () VIT. I )| < Oyt~ 2 msf s (14 Y VI,

p(z)  p(y)
and for |h| < |z —y|/4,
h|\ S
VoK@ hy) — VeKE )l < O (B0 it 2emetamate
Vit
Then we give the gradient estimate of pf, (-, ).

Proposition 3.6. Suppose that o >0 and V € By for some q > n.

(1) For every M > 0, there exists a constant Cpy > 0 such that for all
z,y € R" and t > 0,

Vbt o (2,9)|
- Cut? (1+ Ve —yP2+ 2 \/|xfy\2+t2)—M
T (| —y)orntD2 plx) P(y) ’

(ii) Let 6y =1 —n/q. For every M > 0, there exist constants Cpr > 0 and
¢ > 0 such that for all x,y € R™, t > 0 and |h| < |z — y|/4,

Cut* ( |h| >51

@+ e —yP)r 2\ E 1 e P

|V&p£U(I‘Fh,y)A*Vkp£”($,y)‘S

(i) Let o € (0,1/2 —n/2q). For every M >0,
L‘Vsza(l)(x)‘ < Cmin{(t/p(x))" 27, (t/p(x))~"'}.

Proof. For (i), since

<, dr
vibpf,o’(‘rﬂy) = C/ e vIKtLZ/Alr(x?y)
0

7‘1_0 )
we apply Lemma 3.5 to obtain
Vapt o (2,y)]

oo 2. —(n o _ _
SC/O () e (ﬁ;(m)) M<\/%;<y)) =

< Ct—(n—i—l)—QMp(x)JV[p(y)M/ €_CT(1+|x_y‘2/t2)rM+a+(n+1)/2_1d’l".
0

Let r(1 + |z — y|?/t?) = u. We can get

IVl o (2, 9)]
< Ct M ()M p(y)M
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oo M+o+(n+1)/2—1
_ U _
< e () (1+ [z — y2/t2)du
0 L+ |z —yl?/t

20 _ 2 2 _ 2 2\ —-M
< Ct (1+\/\a: Y2+t +\/|x Yl —|—t>
(12 + |z — y[?)ot(nt1)/2 p(x) p(y)

For (ii), by the subordinative formula and Lemma 3.5, We can prove that
(ii) holds.

For (iii), we divide the proof into two cases.

Case 1: t > p(x). Using a direct computation, we obtain

[tV P, (1)(@)]

{20+1 t \N—M t \—M
< .
<O @y (1 + )) (1 + ) dy

t —M t20+1
“Cm d
(p(x)) /R" (t+ |z — y[)2otn+T Yy

t N-M
ER
p(x)
Case 2: t < p(z). In this case, it follows from the subordination formula (3)
that

> dr
Ve PL @I <0t [ ([ VK @ldy) o = I+
0

where

IN

t*/4p(z)? dr
Il = t/o (& (/ ‘v Kt2/4r(x y)|dy) 1— U;
00 _ dr
I2 = t/ e (/ |V Kt2/47‘(x y)|dy) :
t2/4p(x)? "

2/4p
By Lemma 3.5, we obtain

(4) / VK 0y () ldy < OVt

Then we can deduce from (4) that
t2 /4p(x)?
I < C’/ e T 2dr < Ot/ p(x)) .
0
For I, since ¢ > n, it follows form the formula
e =) - Kb = [ [ hule = DV Ka ez sy
O n

that for 6g =2 —n/q > 1,

L CE s ds o Vs
Ve @ <0 [ <oy

\/
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Therefore,
& t t
I, <C e*TrU*1/2(7)50dr <C(—

)1+20.
2 /4p(x)? p(x)V/r

p(z) O
3.2. Estimation on time-fractional derivatives

For a > 0 and 0 < ¢ < 1, define Déf(f)(m) = t*0 PL,(f)(x). Denote by
D7 (.,-) the integral kernel of DtL)(f.

t,a
Proposition 3.7. Let a > 0 and o € (0,1).
(1) For any M > 0, there exists a constant C' > 0 such that
Cyt® t t \—M
D ()| < (1 + )
" (t+ |z —yl)nte plz) — p(y)

(ii) Let 0 < & < § = min(2ao0,20,8y). For any M > 0, there exists a
constant C' > 0 such that for all |h| < t,

cte ||\ t t M
DES () DL < G (Y g
e e @ " o)
(ili) For any M > 0, there exists a constant C > 0 such that
C(t/p(x))
DLo’ d ’< S eV
| [Pt o] < i

Proof. At first, we prove (i). The following two cases are considered.
Case 1: a € (0,1). By the functional calculus, we get

< e drds
taa?ptlja(xa y) = Cozta / / arptL—i-r,a(I7 y)slﬁ
0 0

By (i) of Proposition 3.4, we obtain

dr ds
L,o a
‘Dt,a( <Ot / / |Dt+r1xy‘t+rsl+a

20
<Cta/ / (t+r)
((E+7)2+ |v —y[2)/2Ho

x(1+ t+r)) (1+(t+r)>—M dr ds
p(x) p(y) t+rsite
On the one hand, a direct computation gives

penlzen [ [ () ) "t

drds
a —n—2M-—1
< Ct% / / (t+r e

< ol )2 [ a1y
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Taking the change of variable u = r/t, we obtain

o0

[DEZ ()] < Opla) ™ pl) ™t [ ()7 (1 4 0) 72N

<o () (i)

One the other hand, since

L > —w gL dw
pt,o’(m’y):c o e K(t+r)2/4w($,y)F>

we can get

07y, (x,y)

N - dw \dr
= Cut / 37’(/ I((t—&-r)2/4w('r y) wl- o') ro
(t _|_ r) dw \ dr
= C,t% LK{;
C / ( /0 (t+r)? /4w ('T y) o‘) ro

. (t+7)? dr L _dw
= Cat / / LK(t+r)2/4w(x y) O‘(t—‘r’f‘))e wl—a’

which, together with Proposition 3.2, yields
L @)

< 0o p( Mo M [ ﬂu > emcleylw/(tH0" gy n/2Myo-1y
< Ct%p(x)™ p(y) e o (t+r)nteal Ta>w w

< Ct%p( M/ —w / Ix—y\Q ) (nt+a)/2
0 (t+7)?

dr
/24 M+o—1
x (t +r)vz+2M+1 Toz>wn 7T dw

e M M 00 oo
< M/ e‘”(/ (t—i—r)a_QM_lﬂ)wM”_l_aﬂdw
0 0

|z —y[r+e e

cte £ NM, ot M
Slw—y|”+”‘(p($)) (@> '

If t > |x — y|, then

M M Y Ccte Ct»
Gw) G) Picew] < < oy e

If t < |z —y|, we can also get

M M - ct
()" )" IPte | < G
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The arbitrariness of M implies that

cte t t \—M
Dy (w,y)| < 1+ +
DL < ey (57 * o)
Case 2: « > 1. Let v = o — [a] and k = [a] + 1. We can get

drds
taaf‘pf:a(l' y) = taL[a]U/ / ant+Ta z,Y)—— pSET

- drds
/ / Lk thrrU €z y) 2+Q k

drds
//th Y T ryFsrraE

One the one hand, by Proposition 3.4,

pissor[[ [ (552 () st
< Ct?p(x) p(y)™ /OOO rk=o=1 (¢ 4 p) T 2M kg,

<o (L tfp@) (L)

On the other hand, we apply the change of variables to obtain

o o o —w e dr dw
Dl )| = et / ¢ / 3fK(Lt+r)2/4w(x,y)m)F
< Cto‘/ w{/ ((t—l—r) J4w)~ n/2g—cle—y|*w/(t+r)?

(t+7r) (t+r) M dr dw
(o) ) TR f s

Ct"‘p(:v)Mp(y)M/o e—w /Ooo(t+r)—k—"—2M

2 — (7
y (|~"€t—+y|)2w> ( L+a)/2rk7a71dr}wfa/QJrM«Hffld,w
T

<o p(x)M —2M/
- |m_y|n+a

y (/00(1+u)_k—‘r(l—QMuk—a—ldu)w—oc/Q-‘,—]V[—‘ro'—ldw
0

<p ;H (1+ p(in)M(” p<ty>)M'

The arbitrariness of M implies that
Cte ( " t n t >—M
(t+ |z —y[)nte p(z)  ply)/

IN

DI (2,y)] <
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Similar to (i), the proof of (ii) can be completed by Propositions 3.4 & 3.2.
So we omit the details.
For (iii), when a € (0, 1), by (iii) of Proposition 3.4, we change the order of
integration to obtain
dr ds

L,o « >
Dt,oc ('r7y)dy’ < Ct / t+r glto

o t+r/p )0 dr  ds
<Ct/ / A+t r)/p@)™ 475

L,
t+i 1(% y)dy

‘ R

If t > p(x),
)\ M dr  ds
DLo’ d ‘< ta/ / (
’./n (= )dy| < © o Jo (p(x)) t4rstte
S Ctap(x)Mféltfa#*(slfM/ Uia(l‘ku)éliMildu
0

C(t/p(x))"
~ (A4 t/p)M

If t < p(x),

o [T () dr
[.p ”dy‘““/o (&) T e

t N\ _ Ct/p(x)”
<C(;m) < Truey

For a > 1, we have

’/ DLawydy‘<Ct°‘/

o +r/p )% dr ds
<o [0 / (4 (1)o@ [+ F 52 F
If t > p(x),

ol o _ > —_M— & ds
Dfy (a:,y)dy‘ < Ct*p(x)™ 51/0 (t+r)M k(/ m)dr
S Otap(I)Mfzil/ (t—&—T)&liMikT‘kiaildT

0
C(t/p(x))
— (A +t/p(@)M

ds
t+mffydy} HT Fgrtak

’ Rn

If t < p(x),

[ ptzan] < o [T (S G o)
dr

SCt"p(:v)_él/ (t+r)51_kra+1_k
0

dr
(t + r)Froti-k
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C(t/p(x))™
= (Lt p(a))M

This completes the proof of Proposition 3.7. O

4. Characterization of Campanato spaces associated with L

In order to characterize C] (R™), we need the following lemmas whose proofs
are quite similar to those in [13].

Lemma 4.1. Let o € (0,1) and o > 0. The operator to‘af‘Ptﬁ, defines an isom-
etry from L*(R™) into L*(R';', dxdt/t). Moreover, in the sense of L2(R™), it
holds
N dt
flo)=C lim lim [ (07 PL,)*(f)(x)—

N—ooe—0 J_ t’

For o € (0,1) and a > 0, define an area function S% , as follows:

dydiy 1/2
L a ga L 2
SE( // 08 PE (D) g ),

where I'(x) denotes the cone {(y,t) : |z —y| < t}.

Lemma 4.2. Let o € (0,1) and o > 0. The area function Sa is bounded on

L2(R™).

oa

Lemma 4.3. Let 0 € (0,1), @ > 0 and 0 < v < min{2«,2a0}. Let f be a

n/(n+v)

linear combination of H -atoms. There exists a constant C' such that

I1SE (D)l pnsmsn < Clf N o

Lemma 4.4. Let 0 < v < 1. For any pair of measurable functions on ]R:L_H,
we have
o no o e dzxdt
// 20 PL, (f)(@)] - [t°0F P, (9) ()| ——
Rn,+1 t
a o L
< Csup B|1+2’Y/"/ / [t 0} P, (x)

dxdi\1/2
(@)*==)
1+~/n
dydt\ n/2(n+7)
ago pL 2
x { L] e @wrg) } |

Lemma 4.5. Let ¢ € (0,1), a > 0 and 0 < v < min{2a,2a8}. Let f €

LY(R™, (1 + |z)~+749)dx) for any e > 0 and let a be an HY' " _atom.
Then for

F(z,t) == t*07 P, (f)(2),
G(x,t) = 107 P, (a)(x),
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there exists a constant C such that

(z)a(z)dz = / /R . F(x,t)G(x,t)%

Finally, we can obtain the following characterization of C] (R™) correspond-
ing to the time-fractional derivative of pZ (-, ).

Theorem 4.6. Let V € By, ¢ > n. Assume that o € (0,1), >0,0<v<1
with 0 < v < min{2c,2ac}. Let [ be a function such that

(5) / n (f(”””dx <

1+ ‘x|)n+'y+s

for some € > 0. The following statements are equivalent:
(i) feCLR™);
(ii) There exists C' such that HDL (oo < CY;
(iii) For all B = B(zp,rp) C R™,

(6) (5 [ [ pEen@rEe)” < cispe
Proof. (1)=(ii). If f € C}(R™), then |t*0¢ PL, f(x)| < I + II, where
= [ DES @) () — )y
=|7@) | i)y

For I, we have

e -yl
ISC”f”CZ/RnW

We further divide the estimate of I7 into the following two cases.
Case 1: p(x) < t. By Proposition 3.7,

11 < | fllezotar’| [ DE@.s)dy

dy < Ct7[|fliez-

tOé
< tY —————d
<yt [ e
< I fllezt™.

Case 2: p(z) > t. We use Proposition 3.7 again to obtain that there exists
d1 > v such that

1T < | fler (e /D 2, y)dy

(t/p(x))™

< Wl /o) 4 gy
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(t/p(x))" 7

< \\fllczt7(1 +t/p(a))M

<A flle ™

(ii)=-(iii). Assume that (ii) holds. Then

dxdt\1/2 dmdt 1/2
2 2,Y
|B|/ f, Ptz @) <t [ [ ¢

< flez 1BI"™.

(iii)=-(i). Assume that (6) holds. Let a be an HZ/(n+7)—atom associated
with B = B(xp,rp). Then by Lemma 4.5,

. J@ele)de =C / /RHJ“GQPL 1)(@)i0p PE, () (@) 222

t )
which, together with Lemmas 4.4 & 4.3, gives

| . J(w)a(z)da

dzdty1/2
«a a 2
SUP<|B|1+2w/n/ / 170" P ()] T)
. dydi\n/2(n+y) 1y/n
L] o Pt%(,(a)(y)\? ,,H) dx}
" |e—y|<t ¢

dxdt\1/2
1% 5(@) 1/ sup ( ‘B‘HW / / o0 PL (1)) 20

< Ha||HZ/<n+w>~

IN

IN

Hence

T(g):= | f(@)g(@)de, ge HYT(RY)
Rn

is a bounded linear functional on H n/ ("'M)(R”) equivalently,
f e (Hy " (RY) = CLR™). =

Below we consider the characterization of C] (R™) via the spatial gradient.
Define a general gradient as V := (V, 0;).

Theorem 4.7. Let V € By, ¢ > n. Assume that o € (0,1/2 —n/2q), a > 0
and 0 < v < 1 with 0 < v < min{20,2ac}. Let f be a function satisfying (5).
The following statements are equivalent:

(i) feCrL(R");

(ii) There exists a constant C > 0 such that

[tV P, flloo < CH7
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(i) w(z,t) = PE, f(x) satisfies that for any balls B = B(xp, ),

dxdt
(7) |B|1+2v/n/ /|tv ‘2 <C.

Proof. (i)=(ii). Let f € C](R"). By Theorem 4.6, |[td; P%, (f)lloc < Ct7. One
writes tV, Pl f(x) = I + I1, where
L= | tV.PL(f(2) = f(2))dz;
Rn

II := f(x)tV, Pl (1)(2).
We first estimate the term I. Because f € C] (R™), then
[f (@) = f()] < I flley | — =7

Since
COp20+1

N @y

‘tvmptl,/a(
a direct computation gives

11 < Ifllex / 1V, PE (2, 2)] - o — 2]dz

t20+1|.’L' |'~,/
< flley / 2 o+ (n+1)/2
re (82 4]z —y[?)
<t flle-
By Proposition 3.6, we have
[tV P, (1)] < min{(t/p(2)) 27, (t/p()) "™}

The estimate of IT is divided into two cases.
Case 1: p(zr) < t. f € C}(R") implies that [f(z)| < p(x)7]|fllc;. Then

I1 < C|flle (@) |tV P, (1) @)
. —M
< Ol flezo) (5

M~y
<Clflet (55)
S Cllflleyt
Case 2: p(x) > t. We can get
11 < C||flle; p(2) |tV P, (1) (2)]
t

< Clflegotar (-5)

t ) 1420 —7

< Ozt (5

< Cfllegt.



148 P. T. LI, Z. Y. WANG, AND K. ZHAO

(ii)=-(iii). For every ball B = B(zp,rR),

dxdt dajdt o
[ et <[ ot <

which implies that (7) holds.
(iii)=-(i). Assume that (7) holds. For any ball B = B(zp,rp), it holds

(n dxdt
suprg +27)/ /|t8t = )\2 v < 00
B

It is a corollary of Theorem 4.6 that f € C](R™) with

—(n "B dxdt
Iy <suprs™* [ [ ol ()@)P S < o -
B 0 B

Rﬁ“ is called a k-Carleson measure if

v(B(z,r) x (0,7))
12 = su < 0
Ivle =m0 = Bam

The following result can be deduced from Theorems 4.6 & 4.7 immediately.

A positive measure v on

Theorem 4.8. Let V € By, ¢ > n. Assume that o € (0,1/2 —n/2q), a > 0
and 0 < v < 1 with 0 < v < min{20, 2ac}. Let dv be a measure defined by

dv(z,t) == [tV P (f)(2)dzdt/t, (x,t) € RTT.

(i) If f € C}(R™), then dv is a (1 + 2v/n)-Carleson measure;

(ii) Conversely, if f € L*((1 + |x|)~™"7=%dx) for some € > 0 and dv is a
(14+2v/n)-Carleson measure, then f € CJ(R™). Moreover, in any case,
there exists a constant C > 0 such that

FIE < lldvle < ClFIE,-
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