DOI QR코드

DOI QR Code

NUMERICAL SOLUTIONS FOR ONE AND TWO DIMENSIONAL NONLINEAR PROBLEMS RELATED TO DISPERSION MANAGED SOLITONS

  • Kang, Younghoon (Department of Mathematics Sogang University) ;
  • Lee, Eunjung (Department of Computational Science and Engineering Yonsei University) ;
  • Lee, Young-Ran (Department of Mathematics Sogang University)
  • Received : 2020.05.09
  • Accepted : 2020.09.21
  • Published : 2021.07.01

Abstract

We study behavior of numerical solutions for a nonlinear eigenvalue problem on ℝn that is reduced from a dispersion managed nonlinear Schrödinger equation. The solution operator of the free Schrödinger equation in the eigenvalue problem is implemented via the finite difference scheme, and the primary nonlinear eigenvalue problem is numerically solved via Picard iteration. Through numerical simulations, the results known only theoretically, for example the number of eigenpairs for one dimensional problem, are verified. Furthermore several new characteristics of the eigenpairs, including the existence of eigenpairs inherent in zero average dispersion two dimensional problem, are observed and analyzed.

Keywords

Acknowledgement

Young-Ran Lee and Eunjung Lee were supported by the National Research Foundation of Korea, NRF-2017R1D1A1B03033939 and NRF-2018R1D1A1B07042973, respectively.

References

  1. F. Kh. Abdullaev, B. B. Baizakov, and M. Salerno, Stable two-dimensional dispersion-managed soliton, Phys. Rev. E 68 (2003), 00605, 1-4.
  2. M. J. Ablowitz and G. Biondini, Multiscale pulse dynamics in communication systems with strong dispersion management, Opt. Lett. 23 (1998), 1668-1670. https://doi.org/10.1364/OL.23.001668
  3. J. Bonetti, N. Linale, A. D. Sanchez, S. M. Hernandez, P. I. Fierens, and D. F. Grosz, Modified nonlinear Schrodinger equation for frequency-dependent nonlinear profiles of arbitrary sign, J. Opt. Soc. Am. B 36 (2019), 3139-3144. https://doi.org/10.1364/JOSAB.36.003139
  4. E. Carneiro, A sharp inequality for the Strichartz norm, Int. Math. Res. Not. IMRN 2009 (2009), no. 16, 3127-3145. https://doi.org/10.1093/imrn/rnp045
  5. Q. Chang, E. Jia, and W. Sun, Difference schemes for solving the generalized nonlinear Schrodinger equation, J. Comput. Phys. 148 (1999), no. 2, 397-415. https://doi.org/10.1006/jcph.1998.6120
  6. M. Delfour, M. Fortin, and G. Payre, Finite-difference solutions of a nonlinear Schrodinger equation, J. Comput. Phys. 44 (1981), no. 2, 277-288. https://doi.org/10.1016/0021-9991(81)90052-8
  7. M. B. Erdogan, D. Hundertmark, and Y.-R. Lee, Exponential decay of dispersion managed solitons for vanishing average dispersion, Math. Res. Lett. 18 (2011), no. 1, 11-24. https://doi.org/10.4310/MRL.2011.v18.n1.a2
  8. Z. Fei, V. M. Perez-Garcia, and L. Vazquez, Numerical simulation of nonlinear Schrodinger systems: a new conservative scheme, Appl. Math. Comput. 71 (1995), no. 2-3, 165-177. https://doi.org/10.1016/0096-3003(94)00152-T
  9. D. Foschi, Maximizers for the Strichartz inequality, J. Eur. Math. Soc. (JEMS) 9 (2007), no. 4, 739-774. https://doi.org/10.4171/JEMS/95
  10. I. Gabitov and S. K. Turitsyn, Averaged pulse dynamics in a cascaded transmission system with passive dispersion compensation, Opt. Lett. 21 (1996), 327-329. https://doi.org/10.1364/OL.21.000327
  11. W. R. Green and D. Hundertmark, Exponential decay of dispersion-managed solitons for general dispersion profiles, Lett. Math. Phys. 106 (2016), no. 2, 221-249. https://doi.org/10.1007/s11005-015-0811-9
  12. W. G. Hoover and C. G. Hoover, Time reversibility, computer simulation, algorithms, chaos, second edition, Advanced Series in Nonlinear Dynamics, 13, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2012. https://doi.org/10.1142/8344
  13. D. Hundertmark and Y.-R. Lee, Decay estimates and smoothness for solutions of the dispersion managed non-linear Schrodinger equation, Comm. Math. Phys. 286 (2009), no. 3, 851-873. https://doi.org/10.1007/s00220-008-0612-4
  14. D. Hundertmark and V. Zharnitsky, On sharp Strichartz inequalities in low dimensions, Int. Math. Res. Not. 2006 (2006), Art. ID 34080, 18 pp. https://doi.org/10.1155/IMRN/2006/34080
  15. M. Kunze, Infinitely many radial solutions of a variational problem related to dispersion-managed optical fibers, Proc. Amer. Math. Soc. 131 (2003), no. 7, 2181-2188. https://doi.org/10.1090/S0002-9939-02-06780-1
  16. M. Kunze, The singular perturbation limit of a variational problem from nonlinear fiber optics, Phys. D 180 (2003), no. 1-2, 108-114. https://doi.org/10.1016/S0167-2789(03) 00066-6
  17. M. Kunze, On a variational problem with lack of compactness related to the Strichartz inequality, Calc. Var. Partial Differential Equations 19 (2004), no. 3, 307-336. https://doi.org/10.1007/s00526-003-0218-9
  18. X. Liu and B. Lee, A fast method for nonlinear Schrodinger equation, IEEE Photon. Technol. Lett. 15 (2003), 1549-1551. https://doi.org/10.1109/LPT.2003.818679
  19. P. M. Lushnikov, Dispersion-managed soliton in optical fibers with zero average dispersion, Opt. Lett. 25 (2000), 1144-1146. https://doi.org/10.1364/OL.25.001144
  20. P. M. Lushnikov, Dispersion-managed soliton in a strong dispersion map limit, Opt. Lett. 26 (2001), 1535-1537. https://doi.org/10.1364/OL.26.001535
  21. P. M. Lushnikov, Oscillating tails of dispersion managed soliton, J. Opt. Soc. Am. B 21 (2004), 1913-1918. https://doi.org/10.1364/JOSAB.21.001913
  22. O. V. Marchukov, B. A. Malomed, V. A. Yurovsky, M. Olshanii, V. Dunjko, and R. G. Hulet, Splitting of nonlinear-Schrodinger-equation breathers by linear and nonlinear localized potentials, Phys. Rev. A 99 (2019), no. 6, 063623, 11 pp. https://doi.org/10.1103/physreva.99.063623
  23. M. Matuszewski, M. Trippenbach, B. A. Malomed, E. Infeld, and A. A. Skorupski, Two-dimensional dispersion-managed light bullets in Kerr media, Phys. Rev. E 70 (2004), 016603 1-6. https://doi.org/10.1103/PhysRevE.70.016603
  24. L. F. Mollenauer, A. Grant, X. Liu, X. Wei, C. Xie, and I. Kang, Experimental test of dense wavelength-division multiplexing using novel, periodic-group-delay-complemented dispersion compensation and dispersion-managed solitons, Opt. Lett. 28 (2003), 2043-2045. https://doi.org/10.1364/OL.28.002043
  25. J. M. Sanz-Serna, Methods for the numerical solution of the nonlinear Schroedinger equation, Math. Comp. 43 (1984), no. 167, 21-27. https://doi.org/10.2307/2007397
  26. M. Stanislavova, Regularity of ground state solutions of dispersion managed nonlinear Schrodinger equations, J. Differential Equations 210 (2005), no. 1, 87-105. https://doi.org/10.1016/j.jde.2004.10.006
  27. T. R. Taha and M. J. Ablowitz, Analytical and numerical aspects of certain nonlinear evolution equations. II. Numerical, nonlinear Schrodinger equation, J. Comput. Phys. 55 (1984), no. 2, 203-230. https://doi.org/10.1016/0021-9991(84)90003-2
  28. S. K. Turitsyn, B. G. Bale, and M. P. Fedoruk, Dispersion-managed solitons in fibre systems and lasers, Phys. Rep. 521 (2012), no.4, 135-203. https://doi.org/10.1016/j.physrep.2012.09.004
  29. E. H. Twizell, A. G. Bratsos, and J. C. Newby, A finite-difference method for solving the cubic Schrodinger equation, Math. Comput. Simulation 43 (1997), no. 1, 67-75. https://doi.org/10.1016/S0378-4754(96)00056-0
  30. L. Wu, Dufort-Frankel-type methods for linear and nonlinear Schrodinger equations, SIAM J. Numer. Anal. 33 (1996), no. 4, 1526-1533. https://doi.org/10.1137/S0036142994270636
  31. S.-S. Xie, G.-X. Li, and S. Yi, Compact finite difference schemes with high accuracy for one-dimensional nonlinear Schrodinger equation, Comput. Methods Appl. Mech. Engrg. 198 (2009), no. 9-12, 1052-1060. https://doi.org/10.1016/j.cma.2008.11.011
  32. V. Zharnitsky, E. Grenier, C. K. R. T. Jones, and S. K. Turitsyn, Stabilizing effects of dispersion management, Phys. D 152/153 (2001), 794-817. https://doi.org/10.1016/S0167-2789(01)00213-5
  33. V. Zharnitsky, E. Grenier, S. K. Turitsyn, C. K. R. T. Jones, and J. S. Hesthaven, Ground states of dispersion-managed nonlinear Schrodinger equation, Phys. Rev. E (3) 62 (2000), no. 5, part B, 7358-7364. https://doi.org/10.1103/PhysRevE.62.7358