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ESTIMATES FOR THE RIESZ TRANSFORMS ASSOCIATED
WITH SCHRODINGER TYPE OPERATORS ON THE
HEISENBERG GROUP

YANHUI WANG

ABSTRACT. We consider the Schrédinger type operator £ = (—Agn)? +
V2 on the Heisenberg group H", where Apn is the sub-Laplacian and
the non-negative potential V' belongs to the reverse Holder class RH for
s > Q/2 and @Q > 6. We shall establish the (LP, L?) estimates for the
Riesz transforms T, g,; = VQ(‘VﬁH,LL*S, 7 =0,1,2,3, where Vgn is the
gradient operator on H", 0 < a < 1—35/4, j/4< B <1,and f—a > j/4.

1. Introduction

In this paper, we consider the Schrédinger type operator £ = (—Apg»)? + V2
on the Heisenberg group H™, where Ay~ is the sub-Laplacian and the non-
negative potential V' belongs to the reverse Hoélder class RH; for s > Q/2,
Q > 6, and Q = 2n + 2 is the homogeneous dimension of H"™.

Let us recall some basic facts about the Heisenberg group H". By [7], the
Heisenberg group H" is a Lie group with the underlying manifold R™ x R™ x R
and the multiplication

(z,y, ) (2, t) = (w+ 2, y+ o, t +t' + 22"y — 2zy).

A basis for the Lie algebra of left-invariant vector fields on H” is given by

0 0 0 0 0
Xi= 422 Y= —2o j=1,2....n, T=—.
i 0n, PGy T gy, T Mgy I Ty
All non-trivial commutation relations are given by [X;,Y;]|=—4T, j=1,2,...,n.

Then the sub-Laplacian Ay~ and the gradient operator Vyg» are defined by
n
AH":Z(XJ+YJ)’ VH":(Xla"'aXn;Y17~"aYn)7
Jj=1
respectively.
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The dilations on H" have the form
ox(z,y,t) = (Az, Ay, A*), A > 0.

The Haar measure on H"™ coincides with the Lebesgue measure on R™ x R™ x R.
We denote the measure of any measurable set E by |E|. Then |6, E| = A\¢|E|.
We define a homogeneous norm on H" by

ES n
gl = ((2* + [y*)* + [t1)7, g = (2,y,t) € H".

This norm satisfies the triangle inequality and leads to a left-invariant distant
d(g,h) = |g~'h|. The ball of radius 7 centered at g is denoted by

B(g,r)={he€H" :|g~'h| <1},

whose volume is given by |B(g,7)| = ¢,r?, where ¢, is a constant that only
depends on n.

For 1 < s < oo, a non-negative locally L®-integrable function V on H" is
said to belong to the reverse Holder class RH if there exists a constant C' > 0
such that the reverse Holder inequality

(|113|/BV(9)Sdg>l/s < |g|/BV(g)dg

holds for every ball B C H".

It is well known that if V' € RHy for some s > 1, then V(g)dg is a doubling
measure.

The remarkable feature about the class RH, is its self-improvement [6]; that
is, if V € RH, for some s > 1, then there exists € > 0 such that V € RH .

Assume that V € RH; for some s > /2. For g € H", the definition of the
auxiliary function p(g) is as follows:

1 1

plg) = o) =§1i13{r : TQQ/B( . V(h)dh < 1}.

Recently, the boundedness of some transforms related to Schrodinger op-
erators and Schrodinger type operators with non-negative potentials on the
abstract settings have been received a great deal of attention. See for example
[2-4,10,14]. In particular, Liu, Huang and Xie in [4] showed that the operator
V2L£~1 is bounded on LP(H"), Liu in [15] established the LP(H") estimates
for Riesz transform Vi, £~1, Liu and Xie in [5] obtained the boundedness of
LP(H") and weak L'(H") for Riesz transform V3, £~'/2.

Let us consider the Riesz transforms

Top;=V>*ViL? j=0,1,2,3,
where 0 < o < 1—j/4, j/4 < p <1, and f — a > j/4. In the setting of
Euclidean, Sugano in [9] established estimates of the fundamental solution for
L and showed some LP(R™) estimates for Schrédinger type operators, Wang in
[11] obtained the (LP(R™), L4(R™)) boundedness of operator T, 5,0 = V2*L~#
for 0 < a < 8 < 1, the author of this article in [12] proved that the operator
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Topo = V2*V2L7P is bounded from LP(R"™) into LI(R") for 0 < a < 1/2 <
B <1,5—a > 1/2, and in [13] the author obtained the LP(R™) and weak
LY(R™) estimate for Tp,1,1- More boundedness results of these operators can
be found in [1], [6] and [8].

In this paper, we concentrate on the boundedness estimates for the Riesz
transforms T, g ;. The following (LP(H"), L9(H")) estimates are established.
Theorem 1.1. Forj =0,1,2,3,let0 < a<1—j/4, j/4<B8<1,f—a>j/4

N -1
Suppose V. € RHg for s > 2Q/(4—3). If 1 < p < (%"+%) and

1_1_ 4B=a)—j
q P Q

, then there exists a constant C such that

1T, (F)l Laqany < CIlF Nl o qn)-
Theorem 1.2. For j=1,23, let0<a<1—j/4, j/4A<B<1,B—a>j/4
-1

Suppose V € RHs with Q/2 < s <2Q/(4—j). If1<p< <171a 4 %)

— %, then there exists a constant C such that

1 Tea5.5 (DllLaqny < Cllf o),

1 _ 2a+42 _ 4—j
Pa s Q-

and £ =1
g p

where

2. Some preliminaries

In this section we shall recall some results of the auxiliary function p(g) and
some estimates of fundamental solutions for £ + A on the Heisenberg group.

Assume that the potential V' is non-negative and belongs to RH,, s > Q/2.
Auxiliary function p(g) has the following properties, whose proofs are given in
[2,3].

Lemma 2.1. If r = p(g), then
=)
— V(h)dh = 1.
r92 b
Moreover, —5— fB(g " V(h)dh ~ 1 if and only if r ~ p(g).
Lemma 2.2. There exists a constant lg > 0 such that

=) ()
—_— V(hydh <C|14+ —— .
r@—2 B(g,r) ( ) p(g)

Lemma 2.3. There exist constants C > 0 and ko > 1 such that, for any
g,h e H"

1

1/(1+ko)
ok

1+m(h,V)|g~'hl) <1+m(g,V)|g~'h|

< C(1+mh, Vg hl) ™
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Lemma 2.4. For0<r < R < o0,

1 R\9/*2% 1
_— Vhdhgc*() 7/ V(h)dh.
re-z /B<g,r> (*) r RO Jp(g.m) ()

Let T'z(g, h, ) be the fundamental solution of £ + A for A € [0,00). From
the results in [15], we have:

Lemma 2.5. Assume V € RHg o. For any positive integer N there exists a
constant Cn such that

Cn 1
(1+VAlg~ RN (1 + m(g, V)|g=th[)N g~ RO

Lemma 2.6. Let V € RH2¢ ,j = 1,2,3. Then for any positive integer N
29

Ty, b, A)| <

there exists a constant Cn S’U/C;l that,
Cn 1
(1+VAlg= AN (14 m(g, V)g~ RN 19~ h|9*+7

Proof. Fix gg, hg € H", and put R = \galh0|. Assume that (—Agn)?u + Vu +
Au =0 in B(go, R). It follows from the proof of Lemma 13 in [15] we have

V (h)*|u(h)|dh 1
Vi u(g0)| < C/ - , lu(h)|dh
. (90,R) 90 h|Q 4+ RO B(go,R)

V(h)2dh 1
<C sup Julg)l / AL St
B(go,R) (g0,R) |90 1h|Q i R

Since V € RH 29, it follows that V' € RH, for some ¢ > 2Q)/(4—j). We choose
t such that 2/q i1 /t = 1. By the Holder inequality and Lemma 2.2, it follows

that
/ V(h)2dh
Blgo.R) |90 'h|Q— 4+

1 My dh v
< CR® / V(h)9dh — / e
<RQ B(g0,R) R? Jp(go,m) 9o th|(@— 4+t

2

1 ,

< CRO™* | —— / V(h)dh | R™@*T4I
<RQ_2 B(g0,R) "

< C’R_j(l + Rm(g, V))Ql".

Vi o T2 (9,2, M) <

Then, using Lemma 2.5 we arrive at the desired estimate. [l

Remark 2.7. It can be seen from Lemma 2.3 that Lemma 2.5 and Lemma 2.6
still hold if m(g, V) is replaced by m(h, V).
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3. The proof of Theorem 1.1
We first give the estimates for the kernel of the operator £75.

Lemma 3.1. Assume V € RH; for s > Q/2, and 0 < B < 1. The kernel of
the operator £L~? is denoted as Kpgo. Then, for any positive integer N there
exists a constant C'y such that

Cn 1
(1+m(g, V)|g=thN [g=th|@—4F"

Moreover, the inequality above also holds with m(g, V') replaced by m(h,V).

‘Kﬁ,o(ga h)| <

Proof. When g = 1, it follows from Lemma 2.5 that

Cn 1
(14 m(g, V)lg=th)N |g=th|O=*

For 0 < 8 < 1, by the functional calculus, we may write

c-p = Snmh / AT (L + )7l
m 0

|Kp0(g,h)| =1ITr(g,h,0)] <

Let f € Cg°(H"). Then
LN = [ Kaolg.h)f(h)dh.
where

sin7/f3

00
KB,O(gvh) = / )‘_Brﬁ(gvhv)‘)d)‘
0

™

Note that

/ L < Clg~ !
o M(LHVNgHP)N

holds for 0 < 8 < 1, then by Lemma 2.5 we get

Cn 1

Ksolg, h)| < .
B0l Wl < GG )lg TR JgTha .

Let us estimate the kernel function of the operators Viﬂnﬁ_ﬁ ,j=1,2,3. We
denote the kernel functions of the operators Vi, £L77 as Kg ;.

Lemma 3.2. Assume that V € RHg for s > 2Q/(4 —j), j = 1,2,3, and
j/4 < B < 1. Then, for any positive integer N there exists a constant Cn such
that

Cn 1
(14 m(g, V)lg=" AN |g=th|@-(F=1)"

|Kp.5(g,h)| <

Moreover, the inequality above also holds with m(g, V') replaced by m(h, V).
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Proof. When =1, it follows from Lemma 2.6 that
Cn 1
(1 +m(g,V)lg=th)N |g=th|Q@=1=1)"

For j/4 < 8 < 1, by the functional calculus, we have

L= Lmﬁ/ ATP(L+ NN,
m 0

|K5.,i(9,0)| = Vi ,T2(g,h,0)] <

Let f € Cg°(H™). It follows from (Lo +A) "' f(2) = [y Dz, (2, 2, N) f(2)dz that

VI L0 = [ Ksla. W),

where
sinwf8 [ _a_.
Kosla.h) = =0 [0, Pe(a.h 0jix
Then, by Lemma 2.6 and the inequality
o0
/ = < Clg~'h[* Y,
0 AM(14+VA[gth|2)N
we can arrive at the desired result. O

Next, we give the maximal function estimates for Ta*7ﬁ7j7 7 =0,1,2 3.
Let f € L{,.(H"). For 0 <y < @Q, the fractional maximal operator is defined
by

M) = sup s [ 50lan,

where the supremum on the right side is taken over all ball B C H" such that
g€ B.

Lemma 3.3. Suppose V € RH for s > Q/2, 0 < a < 8 < 1. Let Ty 50 be
the adjoint operator of Ty, go. Then

I Ta..0() (@) < C{Mqo(|.f1%)(g)}
for some 1 < qo < qu, where - =1— 2% and vy = 4(8 - a).

Proof. Let r = p(g). Then by Lemma 3.1 and Lemma 2.3 we have

T 5.0(f)(9)| = /H |Kg,0(h, g)|V (h)**|f(h)|dh
V(h)** |f ()|
g (L+m(g,V)|[g=th|)N |g=1h|Q—48

—  (2Fr)%8 1 20
<C Y o /lgmh_wm [F(h)ldh.

k=—o0

<C dh
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Since 1/q1 + (2a)/s =1 and V € RH,, s > /2, we have

1
R)2*|f(h)|dR
el R ORNO

2 1/q1
1 1
C\| 77— V(h)dh — h)|"*dh .
= <(2k7«)Q »/glh|<2kr ( ) > ((2k’r)Q »/g1h|<2kr ‘f( )| )

For k > 1, by Lemma 2.2,

2
1
—_— V(h)dh < O(2Fr) 74 (1 + 2F)2le
(ri)Q L VO ) (25)710 (1 4 2%)
S C(ri)—4042210ak.

For k <0, by Lemma 2.4, we have

( V(h)dh)
|q_1h\<2’C

< Ctnt ( )za@/s 2) (@/glhng(h)dh>

< C(ri)f4a22ak(27Q/s) )

2c

Taking N > 2lpa, then

T2 5.0(R)] < O( Y 2R Q/S>+Z2’“ N){Mmuﬂql)(g)}n

k=—oc0

< C{M. T |f|’11)(g)}ﬁ.

By the self-improvement of class RH; we know that there exists some 1 < gg <
q1 such that

1
IT3,6,0(F) (W) < C{Mq (| f])(g) } 70 - 0
Using the same method, we can obtain the following result.

Lemma 3.4. Assume that V € RH for s >2Q/(4—j), j=1,2,3. Then
T8, (N (@) < C{Myq, (| £1%)(g) } %

forsomel<q0<q1,whereq—lzl——o‘and’y=4(6—a)—j.

S

Proof of Theorem 1.1. For j = 0,1,2,3, by Lemma 3.3, Lemma 3.4 and the
(LP(H™), L1(H™)) boundedness of fractional maximal operator we get

175 5. (F)llLa@ny < CIlfllor@En

= 1_1_ 4B=9)-j
for (5) = @1 << g, 1 =1 2
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By duality, we have

1Te.6.5 ()l Lany < CllfllLen)

for W < q < 55, and % = % — %. These conditions are
equivalent to
1 1 1 4B8—a)—3j
oy S qa p Q

To complete the proof of Theorem 1.1, we also need to prove the inequality
1 Tep.5 ()l zagny < CllfllLr @y,

where 7 = G—rrtay -
Suppose f € L'(H"), and let 7 = p(g). Then

Vet = [
= u1(g) + ua2(g)-

By Lemma 3.1 and the Minkowski inequality,

o\
([ v uwra)
£ !
— 20q
v ([ i)

_ 1/q
V(g)*
c [ 1 < o pields ) an

It follows from 0 < o < 1 —j/4, j/4 < <1, B—a > j/4, Q > 6 that
204G < 2Q/(4 — j) < s. Let t = s/(2aq), by the Holder inequality we have

- 1/q
Vv 20q
/ : (9) S
- th<r |9~ h|(@=(F=0)a

2aq/s 1 1/t
<C Vi(g)’d ——d .
B </|glh|<r (©) g) </|g1h<r lg~1h|(@-(8=0)tT g)

By V € RH; and Lemma 2.2,

2aq/s
/ V(g)sdg < 07,74o@+2@o@/s'
lg=th|<r

K5.5(g.h) f(h)dh + / K5.5(g.h) f(h)dh

l[g=th|>r

1/g

IA
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Notice (Q — (48 — j))gt’ < @, so
] 1/t
—(Q—(4B—1)g+Q/t
</ g—1h|<Q—<4B—j”t"’dg> sorner

2Qaq
s

Due to

07— (Q - (45— )T+ = =0,

we get

2aq _
V@ 022 a07-@- 8-+ & < ¢
-1hl<r |9 Th|@ @B I = =

So

3
(H v<g>2@|u1<g>|ng) < Cllfliagn-

Note that
ua(o) < [ T .
" Jigmnize (14 DN =1 pjQ-48-5)

T

Then, by the Minkowski inequality we get

_\1/a
([ v ura)
/() "\
_ 20q
N / v </g1h>r (1+W)Ng‘1th‘<45‘j)dh> dg

V(g™ .
<C |f(h)| lg~1h|\Nq ; —dg dh.
n lg=1h|>r (1 + QT) |g—1h|(Q—(45—J))q

Since V € RH,,s > 2Q/(4 — j) > 204, we have

1 - -
wfl s, V(0T < €2V @)
g~ <2Jr

Note that Q — (Q — (48 — 7)) — 4aq = 0, taking N > 2aly, we get
/ oy dg
jg=thizr (1 4 YN g1 @-(a5-i)a
1 / _
: V(g)**dg
(277)9 J\g-1h<2ir

2j(N*2alo)E(2jr)Q*(Q*(4ﬁ*j))6*40@ <C.

IN

O 2N (91,)@—(Q-(45-i)a

11

IA
a
NE

<.
Il
Jan



1264 Y. WANG
Then

\1a
([ v urg) <l
This finishes the proof of Theorem 1.1. O

4. The proof of Theorem 1.2

For j =1,2,3, let Kg; be the kernel of the operators Wg ; = Vfﬁnﬂ_ﬁ. We
first give the kernel estimates.

Lemma 4.1. For j =1,2,3, let j/4 < 5 < 1. Suppose V € RH;, Q/2 < s <
2Q/(4 — j). Then, for any positive integer N there exists a constant Cy such
that

[K,5(g, 1)l

< Cn 1 / V(€)2de 1
T (1l Rlm(g, V)N L9\ S B gg-rnyjay [RTIERTEED g TR )
Moreover, the inequality above also holds with m(g, V') replaced by m(h, V).

Proof. Let T'z(g, h, A) be the fundamental solution of £ + A, where A > 0. By
the functional calculus, for any j/4 < 5 < 1,

g6 - Smrh / AL+ X))t
™ 0
Let f € Cg°(H™). It follows from (L4 X)"'f(g) = [y Tz(g,h, ) f(h)dh that

Wai(1)(0) = Vi £ (D) = [ Ky (a.m) (1)

Then
Wi i(H)(g) = - K} (g, h) f(h)dh,
where
* sinwfS [ _ .
Kp,;(9,h) = — /0 APV T (h, g, A)dA

for j/4 < B <1, and
K} (9,h) = Vi 4Tz (B, 9,0)
for p=1.

Fix go, ho € H". Let u(h) = Iz (h,go,A) and R = 190l It follows from
the proof of Lemma 13 in [15] and Lemma 2.5 that

|V§:ﬂnu(ho)|

1 1 V(€)2de 1
<C : N\ gt “Ten—a+j | Rnats [
(1+ A2 RN (1+ Rm(go, V)" VB JB(ho.R) |hg §[*~*47  RH



ESTIMATES FOR THE RIESZ TRANSFORMS 1265

Then, for 5 =1 we have
‘Kﬁg(goahoﬂ = WHn hrﬁ(h0a90a0)|

e 1 1 {/ V(€)2de +1}
B (1+Rm(go,V))NRn_4 B(hoR) |hg 'EP—4H - R

Note that
%0 -5
/ %w < CR**.
o (1+A2R?)
So, for j/4 < B < 1, we get

Cn 1 V(f)Qdf 1
B3 (1 N Rm(go, V))N Rn—48 B(ho.R) |h0 1€|n—4+3 RJ .

Next, we give the maximal function estimates for T 5 ;, 7 =1,2,3.

Lemma 4.2. Suppose V. € RH, with s > Q/2. Let 0 < a < 1—j/4, j/4 <
B<1,B—a>j/4 Then for any f € C§°(H"),

T2 5.4(N()] < C{Myg (1) (9)}
holds for some 1 < q < q, where —1 =1- —a, p% = @
4B —a) = .

Proof. Let r = p(g), C, = {h : 2*71r < |g7h| < 2Fr}. We choose ¢ such that
1/t=2/s—(4—3j)/Q. Then 1/t+1/q1 + (2a))/s = 1. By the Hélder inequality,

T2 () (@)
+oo
Z/ K (g, )V ()22 £ ()] B

k=—o0

c Z; (2%7) < 1) /|Km(g, )tdh>1/t

1 2a/s 1 /a1
X | ——= V(h)*dh 7/ h)|%dh .
((2]@71)@ /B(g,Zkr) ( ) > ((2k’r)Q B(g,2kr) |f( )| >

Due to V € RH,, we have

2a/s k)2 2
((Zki)Q /3(972]%) V(h)sdh> < C(ri)—4a (((22]%))62 /B(ggkr) V(h)dh) .

Let Zy—;(f)(9) = [in lg,lfélh%. By Lemma 4.1, the Minkowski inequality
and theorem of the fractional integral on Heisenberg group, we obtain

(2%7)@ ((2;@1)@; /Ck |K;,j(g,h)|tdh>1/t

f%, and v =

IN

IN
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([, @i o)1) an) " <zkr>w>

k22 (L an)” Ry 2
((2 r) ( T /B e, V) dh) + (24 )
1 1 @— (2kr)2 2 . %—J
= Sy (2hr) 74 ((ri) é 4((2kr>Q /B@,M V(h)dh) +n) )

1 1 (2k7)2 2
<C : V(h)dh 1].
< O @ (597 fogann V) +
For k > 1, by Lemma 2.2 we have
2k: 2
( .T)Q/ V(h)dh < C2F.
(QJT) B(g,2kr)
For the case k < 0, by Lemma 2.4 we get
(26r)?

(1)

1

V(h)dh < C2F2=Q/9)
/B(g,Q"'r) ( ) r@—2

/ V(h)dh < C2F(2=Q/s),
B(g,r)

Then, taking N > 2lp(a + 1) we get

0 0

‘T;,B,j(f)(g” <C (Z m + Z (2]9)20((2?))

k=1 k=—oo

1 1 /a1
q1
" (2Fr)i—1-a) <(2kr)Q /B(gm) |f(R)| dz)

1 a
q1
<C ((2k7,)Q—(4([3—a)—j)q1) /B(%%) |f(R)] dh)
< C{Mq, (1119)(9) 3,

where 7 = 4(8 — a) — j. By the self-improvement of class RH; we know that
there exists some 1 < g < ¢ such that

I Ta 5.5 (H)(9)] < C{Mq(If1T)(9)}7. O

Proof of Theorem 1.2. By Lemma 4.2 we know
1755, (F)llLa@ny < C|lfll o @n

holds for ¢; < ¢ < ﬁ and % = % - %. By duality, we get

1Te,,; (f)llLa@ny < CllfllLe@En)
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4(

Q 1_1_ 4B=)—j i o
o=t == <4 < po and i~ > o - These conditions are equiv:

alent to

(1]

2]

[6]

[7]

[9]

(10]

(11]

(12]

(13]

(14]

(15]

1 1 1 4B—-a)—y
1<p§w and:—(/BQa)J.
et @ r 0
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