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EXISTENCE OF RESONANCES
FOR DIFFERENTIAL OPERATORS

INSUK KM

1. Introduction
Let H be a Schrédinger operator in L?(R)

d?

with suppV C [—R, R]. A number z, in the lower half-plane is called
a resonance for H if for all ¢ with compact support {¢,(H — 2)"1¢)
has an analytic continuation from the upper half-plane to a part of the
lower half-plane with a pole at z = z. Thus a resonance is a sort of
generalization of an eigenvalue. For Imk > 0, (H — k?)™! is an integral
operator with kernel, given by Green’s function

ik @) (ky)

2y
w0
g(k,z,y) =
P_(k,z)pi(k,y)

where
—li(k,2) + V(e)px = k*ox(k, ),
pi(z)=e***,  ta>R
and W (k) = ¢! (k,z)¢-(k,z) — 4(k, )L (k,x), which is independent

of z.

Thus

(o, (8 = B)70) = [[ ath 2, 0)e@)et0) dady
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has an analytic continuation to the whole lower half-plane with poles
where W(k) = 0, i.e., for k such that ¥,(k,z) = cyp_(k,z). Therefore

k? is a resonance for H if and only if there exists ) such that
—p" + Vop = k2, —00 < & < 00,

and ¢(z) = Cye*'*® for £z > R. (outgoing conditions)

The simplest situation producing resonances near E > 0 is when V(z)
has “barriers” that trap classical particles of energy E, i.e., an interval
[a,b] where V(z) < E is surrounded by classically forbidden regions
(barriers) where V(z) > E. In quantum mechanics it is known that
solutions eventually escape from such a trap.

2. Preliminaries

Suppose that V is a positive real-valued function supported in a finite
interval [—R, R] and that Ey = k2 (ko > 0) is the lowest eigenvalue of

d2

Hy=——
N dz?

+V(z)=-A+V(z)

on L?(—R, R) with Neumann boundary conditions at z = +R. So there
is a solution ¢ of the eigenvalue equation Hyy = ki with ¢'(£R) = 0.
We will sketch the proof of existence of resonance for H at k near ko
where k2 = E; is the lowest eigenvalue of Neumann operator H if the
barrier is large enough, i.e., if V(z) — Ej is large enough in the classically
forbidden regions, and estimate |k — ko|.

LEMMA 2.1. Suppose E(f) satisfies

—p + Vipg = E(B)ps

with (£ R) = £Pp(+R), where E(B) and 3 vary continuously with
. Then

dE(B) _ _¥s(R)’ +¥s(-R)*

2.1 =
(2.1) dg ffR pp(x)? dz
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REMARK. The idea for the proof of existence of resonance is that if

[$a(£R)|? is small compared to ffR ¥p(z)? dz, then, by this lemma, F

varies slowly as # changes. Since a resonance k is equivalent to a root
of E(ik) = k?, we will show that by Rouché’s theorem, there is a k.
inside a circle centered at ko = /E, for which E(ik,) = k? as long as
V(z) — Ey is sufficiently large in the forbidden region.

Proof. Suppose that for z = 1,2
“'/’Z.- + Vi, = E(ﬂi)¢ﬂi

for |¢| < R with ¢}y (£R) = +f;9s,(£R). Then

R R
[E(ﬂl) - E(ﬂz)] [—R ¢ﬁ1¢ﬁ2 dr = ‘/;R(¢%2¢ﬁl - ‘1’%1‘/)112)‘130
R
d, '
= [ b~ bn) e
= ("p'ﬂgwﬂl - q»b,,ﬁl"/)ﬂz)rj}z
= (B2 —- ﬂl)[¢ﬂ2(R)¢ﬂ1(R)
+ ¢ﬂ2(—R)¢ﬂ1(_R)]'

Divide by ;1 — 32 and take limit as 3; — 82 — 0. Then we have

dE _  ¢s(R)’ +¥5(-R)*

dB SR vd de

3. Estimates for eigenfunctions in the forbidden region

Now we need to prove estimates to show (2.1) is small. To show that
(£ R) is small we use the fact in [1], [4] that eigenfunctions are small in
the “forbidden region”, {z : V(z) > Re E}. Suppose {z : V(z) < Re E}

is an interval in [~ R, R].
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LEMMA 3.1. If —¢" + V4 = Et on [-R,R| and F(z) = 1 when
V(z) < ReE,

2 12 IFII
61 [ (V=R B+ 1 PIF - g do

er — 2 T € )| .
< /V o REE VI do+ (Fo)Rey'$)

Proof. We have

)d:z:

_/R (F,ww'w+F¢~z/:+zz~¢+z|¢'|2
~Jor 2 2
+

R 1l Wbt
= [ AF Ry —Re B+ ) o
g
2V —ReE

by using inequality ab=(a+/c)(b/\/c)>— ic;—j‘—bz, taking c=v/V —ReE.
This implies

R
2/ (V—Re E)[$ 2+’ |2 F—
-R

|F'|
5V —ReE
< (P()Rew'd)[%, + / _(ReB-V)luf .

V<Re

/ (V ~ Re E)gf* + [¢'P1(F — ) de
V>Re E

Suppose {z : V(z) < ReE} C [R_,R4) C (—R,R). Choose §; >
0,6_ >0, s0

R—6,4 R_

\/V(s)—ReE’ds=/ vVV(s)—ReEds

R+6..
=)

Ry
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Define F as follows;
(1 on R_<z<R;

exp(2/ VV(s)—ReEds) on Ri<z<R-64

Ry

exp(-—2/ vV V(s) —ReEds) on —R+4+é6_<z<R_
R-

| exp(2b) on R-é,<z or t<-—-R+6_.

F(z) =

Then, clearly

|F'()|
2V —ReE
Thus, if

=F for Ry <z<R-64 or —R+6_<z<-R

+RF6+

B(E) = exp(2b) = exp(+2 i VV(s) —Re Eds),

Lemma 3.1 implies

R —R+6.
_ 2 "2 de
02 ([, +f, ) -reBiwr+wr1d
R
< Rew'B)| %+ BB)? [ (ReE - V)IYP* do.

This tells us that the integrals of [1/|> and |'|? are small near z = +R
if the integral of 1/V(s) — Re E is large over the forbidden region, so its
exponential is very large and if Re)'s is small at z = +R.

We need to know that |¢(+£R)|? is small if the integral in the right
hand side of (3.2) is small. For this we may use the following inequality.

LEMMA 3.2. With 'V, é4, and 1 as above

2 —
(33) R+ W(-R)P < = S Rew'h)|,
-1 ,2 R
+ B(E) :2 -_*- 1sup(ReE -V) /Rj |¥1? dz

a
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ifa? <V ~ReE forR—6, <z<R,and ~R <z < —R+6é_ with
by > 1.

Proof. We have, for real f
A d
G4 FEl@PL= [ (7l
B
= [1F16l + 1@+ o) da
B
< [+ PNl +10 P da

If we choose f(z) = atanh[a(zr — (R—64))] and a = R— 64, B =R,
then f(a) =0, f(8) = atanh(aé4) > atanhl, and f' + f2 = a?(sech? +
tanh?)[a(z — (R—64))] = a®. Soifa®? <V —-ReEfor R— 6, <z <R,

we obtain

() 1b()[2|° = atanh(ad, )b (R)[?
R
s/ @6 + [¥[F)dz by (3.4)

R—64

R
s/ (V = Re B)I? + '] de.

R-64
Similarly, if a2 <V —ReEfor ~R<z<-R+6_,
f(@) ()|, = atanh(ad_)p(~R)P

—R+46-

< [l P e
-R
—R+6_

<[ -ReB)uP + P
-R

(by choosing f = atanh[a(z —(—R+6_))], anda = ~R, 8 = —R+6_.)

Since aéy > 1, we have

e—e ! ef-1

> = = .
tanh(aés) > tanh1 parpe et
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Thus (3.2) yields

1e2+41
ae?—-1
B(E)~1¢?

a e?

[W(R)|* + [(-R)* <

(Re "/’IIZ)|I_ZR

+

Ry
fifR (Re E — V)[$[2 dz

ifa? <V -ReEfor R-—6; <z < R,and ~R <z < —R+ é_ with
by > % This completes the proof of this lemma.

We need (3.3) for the values of E near E;. Let us get a certain
inequality that does not depend on F for E near E,.
We know that

\/5 $0+.’E :2)0__\/.’5_ \/ﬂ

This implies, if V > Re E

VV —ReE=+/V—Ey+V —ReE - (V — Ep)
|Re E — Eo|
>V —Ey - ———
= T W-E
on [Ry,R — é,] so that
R-6, R-64 lRﬁE—'EI
\/V(s)—ReEdszf (VV(s) = Eg — ————20 ) ds.
\/I;.;. R4 ) 0 v/ V(S) - E())

Hence if V(z) > Re E for z € [R4, R] and
R=0+ IRe E — E|

Ry vV V(S) - E()
R-6, R—64 1
VV(s)—ReEds > VV(s)— Eyds — 5

R4 Ry

(3.5) ds <

1
2’
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That is,

exp(2 . \/V(s) ReEds) > e~ exp(2 \/V(s) Ey ds).

Similarly, on [-R + é_, R_]

~R+6-

exp(—2 vV V(s) — Re Eds)

-R46_

> e lexp(~2 VV(s) = Eyds)
R

if
(3.50) [ BeEoBl, 2
' —Rrt+s_ \/V(s)—E, ~ 2

Therefore, since B(E) = exp(£2 [, qu:&* \/V(s) — Re E ds), we have

B(E) 2 BB

where

B(Ey) = min{exp(2 g V' V(s) — Egds),
¥ ~R+6._
(3.6) exp(—2/R - VV(s)— Ey ds)},

if (3.5) and (3.5a) are satisfied.
Let us assume

(3.7)
|IRe E — Ey| < lm’in inf VV(m) Ey inf \/V(:c)—Eo ’
2 (Ry,R] R— Ry '[-RR.] R_+R
and

inf \/V — Eo(R R+) > 2, [—;ltnlfi ]\/ V- Eo(R_ + R) > 2.

[R4,R]
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Then (3.5) and (3.5a) above are both satisfied, and moreover,

V- E,
ReFE — E <—-1mn inf
[Re £ = Bl L%mﬁfﬁmR Ry’

V — E }

RR]\/V Eo(R_-+ R)

V- Eofor—RSxSR_and
Ry <z<R,sothat V—_ReE >0

<inf

and also

Re E — |
VV —ReE >V —-Ey — ———e—m > V-E
oE = TV -E - 4 ’
for R—é6; <z < Rand —R <z < —R+6_. Combining the above with
Lemma 3.2 gives the following.

PROPOSITION 3.3. If —¢'' + Vi = Ev on [~R,R] and E, is the
lowest eigenvalue for Neumann operator Hy = —d%z,- +V on [-R,R],

le +1

(3.8) (R +{(-R)? <
€ e? + 1

(mwwl

_ |Re E — Eq o
B(E) lsup(Eq — V)(l sup(Fq = V))/ ||* dz,

provided a < %\/V —Fg for R—é6, <zt<Rand ~R<z<-R+é6_
with a1 > 1 and (8.7) holds, with B(E,) given by (3.6).

REMARK. The condition that /V(z)— Eg is bounded below on
[R4, R] and [—R, R_] required by (3.7) means that V must be discontinu-
ous at + R in order to have support [— R, R]. Dropping these assumptions
would introduce extra complications.

Now, since the denominator in (2.1) is [~ RR Y?dz, not [~ RR |¥|? dz, we

need a lower bound for | f Y2 dz|. f =" + Vo = Etp with E real and
real boundary conditions, then ¥ + ¥ solves the same problem, so we
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could choose a real eigenfunction. But in the general case we are dealing
with, this is not so, and ffR 2 dr might be small or even vanish.

Let Hnpn = —@ + Vo = Epp, with L (£R) =0, n=0,1,.... It
can be shown that Ey < E; < ---. We can argue that if k? is close to
Ey, then a solution v of Hy = —¢" + V¢ = ki will be close to Cpy.
Let P be the spectral projection for Hy and the interval (Eq, 00). Then

P = X(£y,00)(HN) = X[E, 00) (HN)

and since \_E
N 2 >
X(By,00)(A) < B, E, or A2 Ey,
we have for ¢ € D(Hy),
Hyx - Ep
Pyl < N7
1Pl << o, Fpp >
_ [R(=¢"3 + Vg - Eolel?) do
B Ei - E,
5GP+ (V = By)lel?) do
- E, - E, ’

since ¢’'(+R) = 0. Now for ¢ € D((Hy ~ Eo + 1)%) = Q, since D(Hy)
is dense in @, the above formula holds as well.

R
P2 < /_ W+ (V = Bl de /(B — Bo)
_ JER(" + VY — B)pda + |7,

E, - E,

IR
(B = Eo)Igl® + 4'| g
B E, - Ey '

Taking real parts gives

(Rek? — Eo)[l[|? + Rew'd|™
El - EO '

(3.9) 1P¥l* <
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Since we have ¥ = (po,¥)po + Py, choosing ¢ real and choosing
such that (o, ) is real gives

R R
[ wie=towr [ infds
—R —R

R R
+ 2(p0,¥) /_chon/)dx+/-R(P1/;)2 dr

> (po,#)” ~ Py since (o, Py) =0.

/_11/)2 dz

Thus from this inequality with (3.9) we obtain

PROPOSITION 3.4. If —¢" + V4 = k%4 on [-R, R] and Ey and E;
(Eo < Ey) are the two lowest eigenvalues of Hy,

Hence

2 (o, ¥)* — | Py||?

= [[%lI* — 2l Py |*.

2|Rek 2Re¢ ¢| R

Eo|
dr ) —E,

(3.10)

> [lll*(1 -

In fact a lower bound for Ey — E, can be derived for Hy. Assume
that the Schrodinger operator H = -—dil;; +V has a symmetric single-well
potential V so that V(—z) = V(z) and 2V'(z) > 0 for |z| £ R.

The next lemma will deal with a lower bound for E;, — Ey for Hp
with Dirichlet boundary conditions at z = £ R. It appears in [2].

LEMMA 3.5. Let Hp = —-&5 + V(z) on L*(—R, R) with Dirichlet
boundary conditions at ¢ = £ R. Suppose V is a symmetric single-well
potential so that V(—z) = V(z) and 2V'(z) > 0 for |z| < R. If E, is the
lowest eigenvalue and E,, the next eigenvalue above Ey for Hp, then

32
(3 11) El EO fatl (2R)27
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with equality if and only if V is constant.

Note that eigenfunctions of Dirichlet Laplacian Hp and Neumann
Laplacian Hy are close together if V(+R) >> Ey. Further notice that
for € D(Hy), @'(£z) is small near boundary z = £R. For E; — Ep
with Neumann Laplacian Hy, we can change functions @; ( = 0,1) in
the domain of H y to functions ¢; in the domain of Hp near z = +R with
small error by setting x(z) = 1 for —R+é_- <z < R—é4 and x(£R) =
0 and taking ¢; = x@;. Hence Hy has eigenvalues E,N near E; of Hp.

4. Existence of resonances for differential operators

In order to find k such that E(ik) = k2, let us use Rouché’s theorem:
if f and ¢ are analytic inside and on a circle v, then f and g have the
same number of zeros inside v if |f —g| < |f| on 7.

Take f(k) = k? — Ey and g(k) = k? — E(ik). We will show that
|f = g| < |f| on a circle with small radius centered at ko = VEo. Then
we will know that there is a k. inside the circle for which E(ik,) = k2.

First we estimate |E(iko) — Eo|.

LEMMA 4.1. If —" + Vi = E(iko)¢ on R, R] with ¢/(+R) =
+ikoy(£R), then

(4.1) |E(iko) — Eo| < 2ko B(Ey) *sup(Ey — V),

e?+1 e
e2—1la
provided 2k0§;f—}§B(Eo)“l(1 + 4&‘;—%_35:/—)) < 1, where kg = VE, =
VE(0),anda < %\/V —FEyforR—é6; <z<Rand—-R<z<-R+6_
with a6+ > 1 and the right hand side of (4.1) is less than

%min{ inf —————m inf —————m}

C
meR) R-R; ’|-rk.] R-+R

Proof. We have, by Lemma 2.1,

_n\2 2
‘i E(itko)l _ |k MR +(R)
dt f_R »? dz
wy o REEEBE) (B - V(14 BT

= )2 (1 — 2 ReEltke) = Fol)
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if (3.7) holds with E = E(itk,), using Proposition 3.3, Proposition 3.4
and the fact that Rez/;'z/jll_zR = 0, since ¥'(£R) = +itkoyp(+R).

In fact letting y(t) = |E(itko) — Ey|, we know by (4.2), y(t) satisfies
a differential inequality of the form

dy  e+ay
A SRk it 4 =

as long as y(#) < C so that (3.7) holds, where

e?4+1e -1 C
€= ]Co 62 1 EB(EO) sup(Eo - V) S -2—',
€ 2
a~m, and /H—EI_EO.

Here, € will be small if the barrier, i.e., V(z) — Ey is large enough in the
forbidden region.
Assume that

(4.3) 200+ 4B < 1.

We claim that y(1) < 2¢ if (4.3) holds: for ¢ small, y(¢) < 2¢ and as long
as y(t) < 2¢, we have

Thus, y(¢t) < 2efor 0 <t < 1if fj_"‘;—z% < 2¢, which is guaranteed by (4.3)
above.
Therefore, the conclusion (4.1) follows,

e? +
2

|B(iko) ~ Eo| < 2ko-

1 -
: SB(EO) Lsup(Ey — V)

if B(Ey) is large enough so that 2k0:%:—f—i§B(Eo)“1 (1+ 4—’%’%%&) <1

so that (4.3) holds and the right hand side of (4.1) is less than C.

Now, we estimate |f — g| = |E(ik) — Eo| by relating E(:ik) to E(iko),
and the existence of resonance is derived.
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THEOREM 4.2. Suppose V is a positive real-valued function with
compact support in [—R, R] and the operator Hy = ————; + V(z) on
[-R, R] with Neumann boundary conditions has ezgenvalues k¥ =FE; <
E; < ---. The operator H = —3‘!;—5 + V(z) on L?(R) has a resonance
E = k? such that

16e2+1e¢

(4.4) Ik — kol < = 5= =B(Ea)"sup(Eo ~ V),

provided that B(Ey) given in (3.6) is large enough so that the right hand
side of (4.4) is less than % and

e2+1e - 1
4k0 o2 _ 1 EB(EO) lsup(Eo - V) < 'i‘b‘(El —_— Eo),
2
1
2kg 22 i 1 EB(EO)_lsup(Eo -V)
1 . \/ ; \/V Ey
< —min{ inf nf ,
2 [R+,R]R R+ - RR]R_+R
e2+1le 1 4sup(Ey — V)
s N Gty ey A

Proof. Let |y| = 1. Then by Lemma 2.1,

(E(iCko + 7)) — Elik)] = ’ [ S B + )
/ ¢<R)2 FURY
¢2 dz
lw(R)I"’ R,
0 If r Y2 dz|

with ¢'(£R) = xiky(L£R), where k = ko + ty = k —in(k, n > 0).
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Furthermore, we have
R
([p(R)I? + [¥(=R)|*) = Im ¢'y| "

R d Y — gy
(4.5) ‘[R%“ET_“

R _u,7 i
- / A R PN
-R 2

R
= —ImE/R [¥|? dz = —Im E ||9||*.

On the other hand,
Red'$|2p = n(l(B)F + [9(~B)FF) = — L Im B ||y

by (4.5). Therefore, combining these with Proposition 3.4 gives

[p(R)|? + |9(—R)|? < IIm E| - |||
[[Epwrda] 7 klpl2(1 - 2BgE5Rl 4 22 dmE)
< Im F|
T k(1 -215—1‘_—%—"01(1 + 1))
|Im E)|

= E-E )
k- 212l k|

since |[Re E — Eo|~2Im E = Re[(E - Eo)(1+:1)] < |E—Eo|y/1 + L=
|E — Eo|EL. Writing k = ko + ty gives

[p(R)[? + [$(=R)? |E — Ey|
o |2 dal Skt 25 (ko +1)

Aslongast < % and |[E - Ey| < i (E1 — Ey), the denominator in (4.6)
is
|E — Eo|

kO
. —_—t -2 +t)> —.
(4 6&) k‘o t 2 E1 E (ko t)
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Hence, defining E(t) = E(i(ko + tv)) gives, by (4.6) and (4.6a),
~ 2 2
\E(r) — E(iko)| < /0 R+ (R ,

lf g ¥* dal
(4.7) < 2Tsup@l_———o—|, if < k—o.
t<r ko 4
Now, to estimate |E(ik) — Eo| observe that, with
1
e = ko 62 + - B(Eo) sup(Bo — V),

sgplﬁ(t) - E| < sgplE(t) — E(iko)| + | E(éko) — Eo|
t<r t<r

S 27 SUPM + 26,
t<r kO

by (4.7) and Lemma 4.1, which implies
~ 2
[E(7) - Bo(1 - 22) < 26,
ko
1e., _
|E(1) — Eg| < 4e,
ifr < ke de < L(Ey - Ey), 2k GE2 £B(Ee) ' (14 223pE=1)) < 1 and

e“—1la
2¢ < C given in Lemma 4.1.
Finally we must show

|f — gl = |E(k) — Eo| < |f] = |k — kol |k + ko]

for k = ko + 7 on a circle of radius 7.
On this circle,

|f|>7'(2ko—7')>7kor if T<’j1—°.

Thus |f — g| < |f| as long as 4e < TkoT, i.e.,

1
76 :2 + 1515«(19:0)- sup(Bo—V) if 1< ™

4’
and the theorem is proved.

T >
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