1 |
Z. W. Shen, Lp estimates for Schrodinger operators with certain potentials, Ann. Inst. Fourier (Grenoble) 45 (1995), no. 2, 513-546.
DOI
|
2 |
L. Song, X. X. Tian, and L. X. Yan, On characterization of Poisson integrals of Schrodinger operators with Morrey traces, Acta Math. Sin. (Engl. Ser.) 34 (2018), no. 4, 787-800. https://doi.org/10.1007/s10114-018-7368-3
DOI
|
3 |
D. Yang, D. Yang, and Y. Zhou, Localized Morrey-Campanato spaces on metric measure spaces and applications to Schrodinger operators, Nagoya Math. J. 198 (2010), 77-119. https://doi.org/10.1215/00277630-2009-008
DOI
|
4 |
R. R. Coifman, Y. Meyer, and E. M. Stein, Some new function spaces and their applications to harmonic analysis, J. Funct. Anal. 62 (1985), no. 2, 304-335. https://doi.org/10.1016/0022-1236(85)90007-2
DOI
|
5 |
J. Dziubanski, G. Garrigos, T. Martinez, J. L. Torrea, and J. Zienkiewicz, BMO spaces related to Schrodinger operators with potentials satisfying a reverse Holder inequality, Math. Z. 249 (2005), no. 2, 329-356. https://doi.org/10.1007/s00209-004-0701-9
DOI
|
6 |
J. Huang, M. Duan, Y. Wang, and W. Li, Fractional Carleson measure associated with Hermite operator, Anal. Math. Phys. 9 (2019), no. 4, 2075-2097. https://doi.org/10.1007/s13324-019-00300-2
DOI
|
7 |
S. Hofmann, G. Lu, D. Mitrea, M. Mitrea, and L. Yan, Hardy spaces associated to non-negative self-adjoint operators satisfying Davies-Gaffney estimates, Mem. Amer. Math. Soc. 214 (2011), no. 1007, vi+78 pp. https://doi.org/10.1090/S0065-9266-2011-00624-6
DOI
|
8 |
P. Li, Z. Wang, T. Qian, and C. Zhang, Regularity of fractional heat semigroup associated with Schrodinger operators, preprint available at arXiv:2012.07234.
|
9 |
C.-C. Lin and H. Liu, BMOL(ℍn) spaces and Carleson measures for Schrodinger operators, Adv. Math. 228 (2011), no. 3, 1631-1688. https://doi.org/10.1016/j.aim.2011.06.024
DOI
|
10 |
Y. Wang, Y. Liu, C. Sun, and P. Li, Carleson measure characterizations of the Campanato type space associated with Schrodinger operators on stratified Lie groups, Forum Math. 32 (2020), no. 5, 1337-1373. https://doi.org/10.1515/forum-2019-0224
DOI
|
11 |
P. R. Stinga and J. L. Torrea, Extension problem and Harnack's inequality for some fractional operators, Comm. Partial Differential Equations 35 (2010), no. 11, 2092-2122. https://doi.org/10.1080/03605301003735680
DOI
|
12 |
L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations 32 (2007), no. 7-9, 1245-1260. https://doi.org/10.1080/03605300600987306
DOI
|
13 |
L. A. Caffarelli, S. Salsa, and L. Silvestre, Regularity estimates for the solution and the free boundary of the obstacle problem for the fractional Laplacian, Invent. Math. 171 (2008), no. 2, 425-461. https://doi.org/10.1007/s00222-007-0086-6
DOI
|
14 |
J. Huang, P. Li, and Y. Liu, Regularity properties of the heat kernel and area integral characterization of Hardy space H1𝓛 related to degenerate Schrodinger operators, J. Math. Anal. Appl. 466 (2018), no. 1, 447-470. https://doi.org/10.1016/j.jmaa.2018.06.008
DOI
|
15 |
X. T. Duong, L. Yan, and C. Zhang, On characterization of Poisson integrals of Schrodinger operators with BMO traces, J. Funct. Anal. 266 (2014), no. 4, 2053-2085. https://doi.org/10.1016/j.jfa.2013.09.008
DOI
|
16 |
D. Deng, X. T. Duong, L. Song, C. Tan, and L. Yan, Functions of vanishing mean oscillation associated with operators and applications, Michigan Math. J. 56 (2008), no. 3, 529-550. https://doi.org/10.1307/mmj/1231770358
DOI
|
17 |
J. Dziubanski and J. Zienkiewicz, Hp spaces for Schrodinger operators, in Fourier analysis and related topics, 45-53, Banach Center Publ., 56, Polish Acad. Sci. Inst. Math., Warsaw, 2000. https://doi.org/10.4064/bc56-0-4
DOI
|
18 |
C. Fefferman and E. M. Stein, Hp spaces of several variables, Acta Math. 129 (1972), no. 3-4, 137-193. https://doi.org/10.1007/BF02392215
DOI
|
19 |
P. Li, Riesz potentials of Hardy-Hausdorff spaces and Q-type spaces, Sci. China Math. 63 (2020), no. 10, 2017-2036. https://doi.org/10.1007/s11425-018-9443-7
DOI
|
20 |
T. Ma, P. R. Stinga, J. L. Torrea, and C. Zhang, Regularity properties of Schrodinger operators, J. Math. Anal. Appl. 388 (2012), no. 2, 817-837. https://doi.org/10.1016/j.jmaa.2011.10.006
DOI
|
21 |
D. Yang, D. Yang, and Y. Zhou, Localized BMO and BLO spaces on RD-spaces and applications to Schrodinger operators, Commun. Pure Appl. Anal. 9 (2010), no. 3, 779-812. https://doi.org/10.3934/cpaa.2010.9.779
DOI
|