The 2015 revised curriculum is an integrated curriculum that reflects national and societal needs to foster creative convergent talent in the school curriculum. Along with these changes, the Ministry of Education introduced a system to change the major from 2017 to the fourth year of university. Therefore, each university should prepare to reflect the curriculum and institutional change before welcoming students who have completed the 2015 revised curriculum. The university needs to study the countermeasures for implementing the 2015 revised curriculum and expanding the period of major change when preparing the curriculum and contents of the calculus courses that freshmen take. Handong University has been studying the operation methods of new students who want to decide their major at the first grade, such as operating calculus courses at various levels and allocating appropriate proportions of calculus for preliminary examinations. This case is similar to the basic purpose of the revised curriculum in 2015, so it can suggest implications for the operation of the university calculus class after the curriculum revision. In this paper, we have analyzed the results of the recent freshman mathematics test for the recent 5 years and the students' calculus grades and compared them with the contents of the calculus curriculum operated by Handong University and the 2015 revised higher mathematics curriculum. As a result, we proposed five classes of calculus suitable for college major and it was found that the calculus curriculum should include the missing quadratic method in the 2015 revised curriculum.
The purpose of this study was threefold: (1) to select the components of spatial ability that could be associated with the implementation of a polycube task, embody the selected components of spatial ability as learning elements and develop the prototype of polycube teaching-learning materials applicable to gifted education, (2) to make a close analysis of the development process of the teaching-learning materials to ensure the applicability of the prototype, (3) to give some suggestions on the development of teaching-learning materials geared toward mathematically gifted classes. The findings of the study were as follows: As for the first purpose of the study, relevant literature was reviewed to make an accurate definition of spatial ability, on which there wasn't yet any clear-cut explanation, and to find out what made up spatial ability. After 13 components of spatial ability that were linked to a polycube task were selected, the prototype of teaching-learning materials for gifted education in mathematics was developed by including nine components in consideration of children's grade and level. Concerning the second purpose of the study, materials for teachers and students were separately developed based on the prototype, and the materials were modified and finalized in light of when selected students exerted their spatial ability well or didn't in case of utilizing the developed materials in class. And then the materials were finalized after being finetuned two times by regulating the learning type, sequence and degree of learning difficulty. Regarding the third purpose of the study, the polycube task performed in this study might not be generalizable, but there are seven suggestions on the development process of teaching-learning materials.
One area where research is especially needed is their elaboration process and how they elaborate their idea as a group in a mathematical board game re-creation project. In this research, this process was named 'Mathematical Elaboration Process'. The purpose of this research is to understand how the gifted children elaborate their idea in a small group, and which idea can be chosen for a new board game when they are exposed to a project for making new mathematical board games using the what-if-not strategy. One of the gifted children's classes was chosen in which there were twenty students, and the class was composed of four groups in an elementary school in Korea. The researcher presented a series of re-creation game projects to them during the course of five weeks. To interpret their process of elaborating, the communication of the gifted students was recorded and transcribed. Students' elaboration processes were constructed through the interaction of both the mathematical route and the non-mathematical route. In the mathematical route, there were three routes; favorable thoughts, unfavorable thoughts and a neutral route. Favorable thoughts was concluded as 'Accepting', unfavorable thoughts resulted in 'Rejecting', and finally, the neutral route lead to a 'non-mathematical route'. Mainly, in a mathematical route, the reason of accepting the rule was mathematical thinking and logical reasons. The gifted children also show four categorized non-mathematical reactions when they re-created a mathematical board game; Inconsistency, Liking, Social Proof and Authority.
This study noted that a survey of teachers in a leading study conducted in Korea during the Pandemics period pointed out that the "real-time interactive" classes account for a significantly small portion of the remote class format. Contentually, the study reported cases of developing and applying "real-time interactive" class materials based on "planar decision requirements" of high school mathematics subject geometry. The teacher who participated in the development was a math teacher who worked at a Seoul-based high school with 28 years of high school teaching experience, and a teacher who was in charge of geometry in the math department in 2020. The development teacher decided to develop real-time interactive classes. In particular, the materials were developed by organizing the class guidance plan in four stages: 'Meeting and Class Guidance', 'Giving motivation', 'Suggesting tasks', 'Individual Investigative Activities and Teacher Feedback' and 'Reflection and Evaluation' which were selected through the process of selecting the class contents and selecting online class tools. At this time, the development teacher produced and presented about five minutes of video material using the videooscribe, a whiteboard animation program. And in case of task number 8, it consisted of recording the students' free thoughts after class, which served as a role of assessment by students themselves and providing feedback to their teachers. This study is a case study that introduces a series of courses in which field teachers develop class materials, and in addition to presenting class materials that can be applied directly to classes, is a result of a study that focuses on the role of presenting samples for future class data development. The materials developed were verified as class materials based on the opinions of the students who participated in the class and the results of the evaluation commissioned by the three math teachers.
Jun, Young Bae;Roh, Eun Hwan;Kim, Dae Eui;Kang, Jeong Gi
Journal of the Korean School Mathematics Society
/
v.16
no.2
/
pp.383-407
/
2013
As an alternative of making students active and independent under the passive learning conditions in school math classes, many researchers have paid much attention to problem posing and done a lot of research on it. Above all, Brown and Walter proposed What I f Not strategy as a means of problem posing. In this strategy, during the process of posing problems, the transformation of their attributes is inevitably made, and so after problem posing, the process is finished by explaining the problem. But only the simple transformation of attributes could pose wrong problems. It suggests that it is very important to recognize the relationship which leads to organic connection between attributes in order to pose the right problem. However, many other studies of problem posing haven't focused on this fact. Thus, this study tried to design a model of problem posing to help recognize inherent knowledge in the problem and then pose the right problem by adding an activity of meaning analysis. We concretely showed a model of problem posing emphasizing the analysis of meaning by means of an example, thereby examining the meaning of the model. This study expects students to have the chance to understand the true meaning of problem posing and to be active learners after all.
As research on the instruction method of the concept of irrational numbers, this thesis is theoretically based on the Freudenthal's Mathematising Instruction Theory and a conducted case study in order to find an introduction method of irrational numbers. The purpose of this research is to provide practical information about the instruction method ?f irrational numbers. For this, research questions have been chosen as follows: 1. What is the introducing method of irrational numbers based on the Freudenthal's Mathematising Instruction Theory? 2 What are the Characteristics of the teaming process shown in class using introducing instruction of irrational numbers based on the Freudenthal's Mathematising Instruction? For questions 1 and 2, we conducted literature review and case study respectively For the case study, we, as participant observers, videotaped and transcribed the course of classes, collected data such as reports of students' learning activities, information gathered through interviews, and field notes. The result was analyzed from three viewpoints such as the characteristics of problems, the application of mathematical means, and the development levels of irrational numbers concept.
It is not an easy matter to develop problems which help students understand mathematical concepts correctly and precisely. The aim of this paper is to review the merits and demerits of three problem types (i.e. one answer problems, multiple choice problems and proof problems) and to suggest some points that should be taken into consideration in problem making. First, we presented the merits and demerits of three types of problems by examining actual examples. Second, we discussed some examples of misleading problems and the ways to make desirable ones. Finally, on the basis of our examination and discussion, we suggested some points that should be kept in mind in problem making. The major suggestions are as follows; i) In making one answer problems, we should consider the possibility of sitting a solution by wrong precesses, ii) In formulating multiple choice tests which are layered for their easiness of grading, we should take into account the importance of checking whether the students are fully understanding the concepts, iii) We may depend on the previous research result that multiple choice tests for proof problems can be helpful for the students who have insufficient math background. Besides those suggestions, we made an overall proposal that we should endeavor to find ways to implement the demerits of each problem type and to develop instructive problems that can help students understanding of math.
The purpose of this study is to scrutinize the characteristics of a teacher's discursive competence on the basis of mathematical competencies. For this purpose, we observed all semester-long classes of a middle school teacher, who changed her own teaching methods for the last 20 years, collected video clips on them, and analyzed classroom discourse. Data analysis shows that in problem solving competency, she helped students focus on mathematically important components for problem understanding, and in reasoning competency, there was a discursive competence which articulated thinking processes for understanding the needs of mathematical justification. And in creativity and confluence competency, there was a discursive competence which developed class discussions by sharing peers' problem solving methods and encouraging students to apply alternative problem solving methods, whereas in communication competency, there was a discursive competency which explored mathematical relationships through the need for multiple mathematical representations and discussions about their differences. These results can provide concrete directions to developing curricula for future teacher education by suggesting ideas about how to combine practices with PCK needed for mathematics teaching.
Students can infer mathematical principles in a very natural way by connecting mutual relations between mathematical fields. These process can be revealed by taking tasks that can derive mathematical connections. The task of this study is to make expression and design it and derive mathematical principles from the design. This study classifies the mathematical field of expression for design and analyzes mathematical thinking process by connecting mathematical fields. To complete this study, 40 gifted students from 5 to 8 grade were divided into two classes and given 4 hours of instruction. This study analyzes their personal worksheets and e-mail interview. The students make expressions using a functional formula, remainder and figure. While investing mathematical principles, they generalized design by mathematical guesses, generalized principles by inference and accurized concept and design rules. This study proposes the class that can give the chance to infer mathematical principles by connecting mathematical fields by designing.
Let M be a fixed left R-module. For a left R-module X, we introduce the notion of M-prime (resp. M-semiprime) submodule of X such that in the case M=R, it coincides with prime (resp. semiprime) submodule of X. Other concepts encountered in the general theory are M-$m$-system sets, M-$n$-system sets, M-prime radical and M-Baer's lower nilradical of modules. Relationships between these concepts and basic properties are established. In particular, we identify certain submodules of M, called "primeM-ideals", that play a role analogous to that of prime (two-sided) ideals in the ring R. Using this definition, we show that if M satisfies condition H (defined later) and $Hom_R(M,X){\neq}0$ for all modules X in the category ${\sigma}[M]$, then there is a one-to-one correspondence between isomorphism classes of indecomposable M-injective modules in ${\sigma}[M]$ and prime M-ideals of M. Also, we investigate the prime M-ideals, M-prime submodules and M-prime radical of Artinian modules.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.