• Title/Summary/Keyword: Schedule Planning

Search Result 362, Processing Time 0.026 seconds

A Heuristic Algorithm for Power Plant Coal Supply Planning Problems (화력발전소 원료 공급계획을 위한 휴리스틱 알고리즘)

  • Kim, Chul-Yeon;Moon, Hyung-Gen;Choi, Gyung-Hyun
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.37 no.2
    • /
    • pp.132-143
    • /
    • 2011
  • This paper deals with a coal supply planning problem for power plants. We propose a mathematical optimization model to make decisions for coal pile sections, movement of reclaimers, and operation time of conveyor belts. The objective of the proposed model is to minimize the total operation time of conveyor belts and total movement time of reclaimers. The algorithm firstly selects a pile section by considering both the location of reclaimers and the stock amount on that pile section. And then the shortest path from the selected pile section has to be put into the operation schedule and check whether the total operation time is satisfied. Then finally the new schedule is updated. To this end, we have tested the proposed algorithm comparing with the general standard optimization package for the simplified problem SCSPP. From the numerous test runs for comparing with the existing coal supply scheduling methods, We see that the proposed model may improve the coal supply operation by reducing significant coal supply costs.

A Study on Material Requirement Planning by Integrating Schedule and Cost (비용$\cdot$일정 통합관리를 이용한 자원소요계획에 관한 연구)

  • Song Young-Woong;Choi Yoon-Ki
    • Korean Journal of Construction Engineering and Management
    • /
    • v.4 no.1 s.13
    • /
    • pp.106-113
    • /
    • 2003
  • In this study, The matrix method was used with common category concept according to the construction project control system. For the purpose of systematic resource management planning, it should be established on accomplished EVM data for clearing the ordering point according to the attribute procurement analysis. Resource management was presented by connecting the material requirement calculation method and the attribute of procurement method based on the EVM, suggested through analyzing process-data modeling using integrated schedule, cost and material.

A Systematic Approach Of Construction Management Based On Last Planner System And Its Implementation In The Construction Industry

  • Hussain, SM Abdul Mannan;Sekhar, Dr.T.Seshadri;Fatima, Asra
    • Journal of Construction Engineering and Project Management
    • /
    • v.5 no.2
    • /
    • pp.11-15
    • /
    • 2015
  • The Last PlannerSystem (LPS) has been implemented on construction projects to increase work flow reliability, a precondition for project performance againstproductivity and progress targets. The LPS encompasses four tiers of planning processes:master scheduling, phase scheduling, lookahead planning, and commitment / weeklywork planning. This research highlights deficiencies in the current implementation of LPS including poor lookahead planning which results in poor linkage between weeklywork plans and the master schedule. This poor linkage undetermines the ability of theweekly work planning process to select for execution tasks that are critical to projectsuccess. As a result, percent plan complete (PPC) becomes a weak indicator of project progress. The purpose of this research is to improve lookahead planning (the bridgebetween weekly work planning and master scheduling), improve PPC, and improve theselection of tasks that are critical to project success by increasing the link betweenShould, Can, Will, and Did (components of the LPS), thereby rendering PPC a betterindicator of project progress. The research employs the case study research method to describe deficiencies inthe current implementation of the LPS and suggest guidelines for a better application ofLPS in general and lookahead planning in particular. It then introduces an analyticalsimulation model to analyze the lookahead planning process. This is done by examining the impact on PPC of increasing two lookahead planning performance metrics: tasksanticipated (TA) and tasks made ready (TMR). Finally, the research investigates theimportance of the lookahead planning functions: identification and removal ofconstraints, task breakdown, and operations design.The research findings confirm the positive impact of improving lookaheadplanning (i.e., TA and TMR) on PPC. It also recognizes the need to perform lookaheadplanning differently for three types of work involving different levels of uncertainty:stable work, medium uncertainty work, and highly emergent work.The research confirms the LPS rules for practice and specifically the need to planin greater detail as time gets closer to performing the work. It highlights the role of LPSas a production system that incorporates deliberate planning (predetermined andoptimized) and situated planning (flexible and adaptive). Finally, the research presents recommendations for production planningimprovements in three areas: process related, (suggesting guidelines for practice),technical, (highlighting issues with current software programs and advocating theinclusion of collaborative planning capability), and organizational improvements(suggesting transitional steps when applying the LPS).

An Improved Genetic Algorithm for Integrated Planning and Scheduling Algorithm Considering Tool Flexibility and Tool Constraints (공구유연성과 공구관련제약을 고려한 통합공정일정계획을 위한 유전알고리즘)

  • Kim, Young-Nam;Ha, Chunghun
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.40 no.2
    • /
    • pp.111-120
    • /
    • 2017
  • This paper proposes an improved standard genetic algorithm (GA) of making a near optimal schedule for integrated process planning and scheduling problem (IPPS) considering tool flexibility and tool related constraints. Process planning involves the selection of operations and the allocation of resources. Scheduling, meanwhile, determines the sequence order in which operations are executed on each machine. Due to the high degree of complexity, traditionally, a sequential approach has been preferred, which determines process planning firstly and then performs scheduling independently based on the results. The two sub-problems, however, are complicatedly interrelated to each other, so the IPPS tend to solve the two problems simultaneously. Although many studies for IPPS have been conducted in the past, tool flexibility and capacity constraints are rarely considered. Various meta-heuristics, especially GA, have been applied for IPPS, but the performance is yet satisfactory. To improve solution quality against computation time in GA, we adopted three methods. First, we used a random circular queue during generation of an initial population. It can provide sufficient diversity of individuals at the beginning of GA. Second, we adopted an inferior selection to choose the parents for the crossover and mutation operations. It helps to maintain exploitation capability throughout the evolution process. Third, we employed a modification of the hybrid scheduling algorithm to decode the chromosome of the individual into a schedule, which can generate an active and non-delay schedule. The experimental results show that our proposed algorithm is superior to the current best evolutionary algorithms at most benchmark problems.

Optimal Block Transportation Path Planning of Transporters considering the Damaged Path (운송 경로 손상을 고려한 트랜스포터의 최적 블록 운송 경로 계획)

  • Heo, Ye-Ji;Cha, Ju-Hwan;Cho, Doo-Yeoun;Song, Ha-Cheol
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.50 no.5
    • /
    • pp.298-306
    • /
    • 2013
  • Nowadays, a transporter manager plans the schedule of the block transportation by considering the experience of the manager, the production process of the blocks and the priority of the block transportation in shipyard. The schedule planning of the block transportation should be rearranged for the reflection of the path blocking cases occurred by unexpected obstacles or delays in transportation. In this paper, the optimal block transportation path planning system is developed for rearranging the schedule of the block transportation by considering the damaged path. $A^*$ algorithm is applied to calculate the new shortest path between the departure and arrival of the blocks transported through the damaged path. In this algorithm, the first node of the damaged path is considered as the starting position of the new shortest path, and then the shortest path calculation is completed if the new shortest path is connected to the one of nodes in the original path. In addition, the data structure for the algorithm is designed. This optimal block transportation path planning system is applied to the Philippine Subic shipyard and the ability of the rapid path modification is verified.

Development of an Application Software for the Die-Production Information Management (금형 생산관리를 위한 응용 소프트웨어의 개발)

  • Kong, Myung-Dal;Kim, Jung-Ja
    • IE interfaces
    • /
    • v.9 no.2
    • /
    • pp.143-158
    • /
    • 1996
  • This paper deals with the development of a software module for production planning and scheduling activities of an actual die-production management system. Scheduling problems, such as master schedule and detailed schedule, are the focal point of the whole article and they are considered in terms of operation procedures. Schedule-explosion module and load levelling module are the essential components of schedule management. The scheduling module allocates the resources, determines the process priority and the planned start and completion dates of processes. Rescheduling can be done to manipulate unforeseen situations that schedule is delayed owing to inducing defectives, machine breakdowns and lumpy demands. This study indicates a practical model for the die-producation management and helps to apply it for jobs in the real situation.

  • PDF

Minimum time path planning of robotic manipulator in drilling/spot welding tasks

  • Zhang, Qiang;Zhao, Ming-Yong
    • Journal of Computational Design and Engineering
    • /
    • v.3 no.2
    • /
    • pp.132-139
    • /
    • 2016
  • In this paper, a minimum time path planning strategy is proposed for multi points manufacturing problems in drilling/spot welding tasks. By optimizing the travelling schedule of the set points and the detailed transfer path between points, the minimum time manufacturing task is realized under fully utilizing the dynamic performance of robotic manipulator. According to the start-stop movement in drilling/spot welding task, the path planning problem can be converted into a traveling salesman problem (TSP) and a series of point to point minimum time transfer path planning problems. Cubic Hermite interpolation polynomial is used to parameterize the transfer path and then the path parameters are optimized to obtain minimum point to point transfer time. A new TSP with minimum time index is constructed by using point-point transfer time as the TSP parameter. The classical genetic algorithm (GA) is applied to obtain the optimal travelling schedule. Several minimum time drilling tasks of a 3-DOF robotic manipulator are used as examples to demonstrate the effectiveness of the proposed approach.

Maritime Transportation Planning Support System for a Car Shipping Company

  • Park, Byung-Joo;Choi, Hyung-Rim;Kim, Hyun-Soo;Jun, Jae-Un
    • Journal of Navigation and Port Research
    • /
    • v.32 no.4
    • /
    • pp.295-304
    • /
    • 2008
  • In order to achieve a sustainable competitive advantage in the expanding maritime transportation market, most shipping companies are making every effort to reduce transportation costs. Likewise, the car shipping companies, which carry more than 80% of total car import and export logistics volume, also do their utmost for transportation cost saving. Until now many researches have been made for efficient maritime transportation, but studies for car shipping companies have rarely been made. For this reason, this study has tried to develop a maritime transportation planning support system which can help to save logistics costs and increase a competitive power of car shipping companies. To this end, instead of manual effort to solve the routing problem of car carrier vessels, this study has used an integer programming model to make an optimal transportation planning at the minimum cost. Also in response to the frequent changes both in the car production schedule and ship's arrival schedule after the completion of transportation planning, this research has developed a decision support system of maritime transportation, so that users can easily modify their existing plans.

A Study of Construction Duration Predicting Method for Mega Project (메가프로젝트 사업초기단계 사업기간 예측 방법에 관한 연구)

  • Woo, Yu-Mi;Lee, Seung-Hoon;Lee, Hei-Duck;Seo, Yuong-Chil
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2008.11a
    • /
    • pp.597-600
    • /
    • 2008
  • Recently, Several Mega project are been performing as a multi-dimensional development project in Korea, but some problem has been revealed about deficiency of the history, experience, and skill. A multi-dimensional development project require the technology which can manage mega project to its specific at the level of program management. predicting schedule and schedule management are the most important for mega project, been performing over several years. This research shows the method of predicting and planning schedule in the early stage as a pre-study on developing a technology of schedule management. First of all, it presents the development of database considering the specific of mega project that can accumulate the history of schedule and search the schedule according to the type of single and multi building. Also it suggests the method of prediction schedule by creating scenarios according to owner requirements and cash flow, affecting schedule management in the early stage, and the shortening possibility of schedule duration using CCPM theory.

  • PDF

A Basic Study for Accumulation of IFC-based Schedule Information (IFC 기반의 공정정보 축적을 위한 기초연구)

  • Song, Jong-Kwan;Choi, Won-Sik;Won, Ji-Sun;Kim, Nam-Gon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.11
    • /
    • pp.5890-5896
    • /
    • 2013
  • This Study aimed at suggesting the plan for accumulating and utilizing schedule information of IFC file in BIM-based delivery system. For this Propose, First, literature review is conducted for analyzing utilization plan of schedule information and the IFC standard. Second, Schedule Planning process is analyzed to draw Schedule elements, and schedule information items is derived by analyzing schedule process and commercial software. Also, schedule elements in the IFC schema is derived by analyzing IFC schema through drawn schedule information. Finally, this study suggests a concept model accumulating and utilizing Schedule information included in IFC schema, and a conceptual delivery process of BIM model by analyzing BIM Application Guideline for Facility Project by PPS (Public Procurement Service) for accumulating IFC delivery files This study will expects to contribute to accumulate information of BIM model at the point of nationally introducing BIM.