
J. Soc. Korea Ind. Syst. Eng Vol. 40, No. 2 : 111-120, June 2017 ISSN : 2005-0461(print)
https://doi.org/10.11627/jkise.2017.40.2.111 ISSN : 2287-7975(online)

An Improved Genetic Algorithm for
Integrated Planning and Scheduling Algorithm

Considering Tool Flexibility and Tool Constraints

Young-Nam Kim*․Chunghun Ha**†

*Department of computer science and engineering, Pohang university of Science and Technology
**School of Information & Computer Engineering, Hongik University

공구유연성과 공구관련제약을 고려한
통합공정일정계획을 위한 유전알고리즘

김영남*․하정훈**†

*POSTECH 컴퓨터공학과
**홍익대학교 정보컴퓨터공학부 산업공학전공

This paper proposes an improved standard genetic algorithm (GA) of making a near optimal schedule for integrated process
planning and scheduling problem (IPPS) considering tool flexibility and tool related constraints. Process planning involves the
selection of operations and the allocation of resources. Scheduling, meanwhile, determines the sequence order in which operations
are executed on each machine. Due to the high degree of complexity, traditionally, a sequential approach has been preferred,
which determines process planning firstly and then performs scheduling independently based on the results. The two sub-problems,
however, are complicatedly interrelated to each other, so the IPPS tend to solve the two problems simultaneously. Although
many studies for IPPS have been conducted in the past, tool flexibility and capacity constraints are rarely considered. Various
meta-heuristics, especially GA, have been applied for IPPS, but the performance is yet satisfactory. To improve solution quality
against computation time in GA, we adopted three methods. First, we used a random circular queue during generation of an
initial population. It can provide sufficient diversity of individuals at the beginning of GA. Second, we adopted an inferior selection
to choose the parents for the crossover and mutation operations. It helps to maintain exploitation capability throughout the evolution
process. Third, we employed a modification of the hybrid scheduling algorithm to decode the chromosome of the individual
into a schedule, which can generate an active and non-delay schedule. The experimental results show that our proposed algorithm
is superior to the current best evolutionary algorithms at most benchmark problems.

Keywords：Integrated Process Planning and Scheduling, Genetic Algorithm, Inferior Selection
1)

Received 17 May 2017; Finally Revised 19 June 2017;
Accepted 20 June 2017
†Corresponding Author : Chunghun.ha@hongik.ac.kr

Young-Nam Kim․Chunghun Ha112

1. Introduction

Integrated process planning and scheduling problem (IPPS)
is a mixture of process planning and scheduling. Process
planning contains sub-problems of routing and loading. Rou-
ting focuses on determining which sequence to use among
the replaceable operational sequences, and loading is a prob-
lem of determining which resources such as machines and
tools are allocated to the operation for execution. A variety
of resources and alternative sequences are available in manu-
facturing for the same manufacturing feature. On the other
hand, scheduling is a problem of determining when the oper-
ations start and end on each machine, assuming that a process
plan has been determined [6, 20].

In IPPS, several flexibilities and constraints have been
considered. Process flexibility means that there are alter-
native operation sequences to be performed in a job. Sequence
flexibility is a changeability of sequence order of operations.
Machine and tool flexibilities imply that an operation can
be performed on alternative machines with alternative tools
and tool access direction, respectively. Process planning is
related to the process, machine, and tool flexibilities, and
scheduling targets the sequence flexibility. Each machine (or
machining center) has a tool magazine that can mount multi-
ple tools, thus can handle many kinds of operations in a
machine. In practice, since the magazine capacity and the
number of tools are limited, efficient decision-making is re-
quired under the limited manufacturing resources.

Due to the high degree of complexity, traditionally, a se-
quential approach has been preferred for IPPS, which de-
termines process planning firstly and then performs schedul-
ing independently based on the results. However, the two
sub-problems are intricately interwoven. Thus, the optimal
process plan does not result in the optimal schedule. Even
the optimal process plan can lead to an infeasible schedule
[19, 23]. It highlights the importance of the IPPS which solve
both sub-problems simultaneously.

There is a myriad of alternative solutions in IPPS due to
various flexibilities. It makes the problem complicated, but
at the same time, it has the considerable potential to improve
the performance of the system. Since IPPS is NP-hard [10],
meta-heuristics have been mainly applied as optimization
methods. According to Ausaf et al. [2] and Petrović et al.
[21], GA, ant colony optimization (ACO), particle swarm
optimization (PSO), and various memetic heuristics com-
bined with these have frequently been applied for IPPS [12].

Among them, GA is the most preferred. With IPPS having
a huge solution space, the superior exploitation capability
of GA is advantageous to improve the solution quality.

There are abundant studies to solve IPPS using GA. Morad
and Zalzala [18] proposed a simple GA for IPPS considering
machine flexibility only. To deal with various flexibilities
such as process, sequence, and machine in IPPS, Kim et al.
[11] introduced a symbiotic evolutionary algorithm that mim-
ics the process of coevolution of various species. Kim et
al. [10] improved their previous study by proposing a mul-
ti-layered symbiotic evolutionary algorithm for IPPS, which
considers tool flexibility, tool magazine capacity constraint,
and tool capacity constraint additionally compared to previous
IPPS. Shao et al. [22] proposed a GA that establishes an
optimal plan reflecting the real-time status of the shop floor.
Liu et al. [17] developed an adaptive annealing genetic algo-
rithm for IPPS in a job shop, which adopts Boltzmann proba-
bility selection using adaptive mutation probability and simu-
lated annealing to avoid premature convergence. Li et al.
[14] presented a mathematical programming modeling for
IPPS and optimized it by an evolutionary algorithm. Li et
al. [15] also proposed a hybrid algorithm that uses the GA
as the main algorithm and applies the Tabu search to further
improve the solution. Li et al. [13] proposed a GA that im-
proves premature convergence by a learning operator that
perform a crossover operation between the currently selected
solution and the current best solution or the generation’s best
solution. Lian et al. [16] applied the imperialist competitive
algorithm [1] to enhance exploitation, which evolves empires
consisting of an imperialist and colonies in parallel. Zhang
and Wong [24] proposed a GA with object-coding representa-
tion, inferior selection, job-based precedence preservative cross-
over, shifting gene and shifting machine mutations, and crow-
ding replacement scheme. Cinar et al. [7] proposed a construc-
tive GA based on the Giffler-Thompson algorithm [8] for
flexible job shop scheduling, in which a priority-based repre-
sentation that consists of the priority of operations is used.

Although many studies using GA for IPPS have been con-
ducted in the past, tool flexibility and capacity constraints
are not considered except for Kim et al. [10]. Also, most
studies use the problem set of Kim et al. [11] as a benchmark
to evaluate the performance of their algorithms. This paper,
which considers tool flexibility and capacity constraints, uses
the new problem set of Kim et al. [10] as a benchmark.
In this respect, this study is different from the existing studies.

In this paper, we aim at developing an improved genetic

An Improved Genetic Algorithm for Integrated Planning and Scheduling Algorithm Considering Tool Flexibility and Tool Constraints 113

<Figure 1> An Example of IPPS with Three Jobs [10]

algorithm for IPPS with tool flexibility and tool related
constraints. We adopted a traditional genetic algorithm proce-
dure, but we employed three methods to improve solution
quality and computation time. The first is the initial population
generation using a random circular queue. It binds the pop-
ulation size, which decreases computation time critically.
Second, we adopted an inferior selection to maintain exploi-
tation capability in the evolution process. Third, we employed
a modification of the hybrid scheduling algorithm [3, 10]
to decode the chromosome of the individual into a schedule.

We organized this paper as follows. Section 2 explains
IPPS in detail after the description on flexibilities for the
flexible manufacturing system and network representation.
The proposed genetic algorithm is introduced in Section 3.
Section 4 is prepared for describing the experimental parame-
ters and results. Finally, we conclude and discuss our re-
search in Section 5.

2. IPPS Problem

A simple description of the IPPS problem is as follows [5].
(1) There is a set of  jobs to be processed on  machines,

    ⋯ 

(2) The job  consists of a sequence of  operations,
  ⋯ 



(3) The set of  tools is noted as T = {  ⋯ }
(4) Each operation must be assigned a machine and a tool

for execution. Let  and  be assigned on the .
Then, processing time of  is .

We assume following operating conditions:
(a) All machines are available at the starting time of sche-

duling.
(b) All jobs are prepared at the starting time of scheduling.
(c) A machine cannot process multiple operations simultane-

ously.
(d) Each operation must be processed at once, that is, it can-

not be separated.
(e) If it is not defined in the network representation, there

are no precedence constraints among the operations.
(f) Pre-emption of an operation is not allowed.
(g) Processing time includes transportation time and setup

time.

We will illustrate the problem in detail using the network
representation by Ho and Moodie [9]. <Figure 1> shows a

simple example of an IPPS. There are a total of three jobs,
job 1, job 2, and job 3, each of which is a network of oper-
ation nodes. The node number is the identifier of an operation
in the job, that is, the operation 1 of job 1 and the operation
1 of job 2 may be different. Each job network has two dummy
nodes indicating the start (S1, S2, and S3) and the end of
the job (E1, E2, and E3). Arrowed lines indicate precedence
constraints. The operations with the tail of the arrowed line
are the immediate predecessors of the operation indicated
by the head of the arrow. That is, the head operation must
be processed after the tail operation is completed. For exam-
ple, operation 1 of job 1 must be completed before operation
2 of the job is executed. They cannot be processed simulta-
neously, and succeeding operations cannot be pre-processed.

In the network representation, OR notation implies process
flexibility, only one branch can be selected for processing.
If a schedule does not satisfy any precedence constraint, it
becomes infeasible. In the network representation, the bran-
ching node without OR notation such as operation 1 in job 3
denotes an AND node that all operations belonging to the
branch must be processed to complete the job. For instance,
job 1 consists of 9 nodes, 1 AND node (S1), 1 OR node
(operation 1), and seven ordinary nodes (operation 2 to 7
and E1). The S1 node has two process routes (operation 1
to 5 and 6-7) and both routes have to be processed because
it is an AND node. The operation 1, on the other hands,
is an OR node which has two process routes, (2-3) and (4).
They can produce the same manufacturing features. This
means that we can choose either one, and the unselected
one is not taken into account when creating a schedule. For
example, If (4) is selected, then operation 2 and 3 become

Young-Nam Kim․Chunghun Ha114

<Figure 2> Steps of GA and Used Methods <Figure 3> The Representation of Operation and a Sequence

dummy operations. In the opposite case, operation 4 becomes
a dummy operation.

Finally, we have to determine which machines and tools
will process the operations. In <Figure 1(b)>, it shows the
possible combination of alternative machines and tools which
process the operation 4 of job 3. It also presents the process-
ing times depending on the decisions. For example, if oper-
ation 4 is run on machine 3 using tool 8, it will take 14-time
units to complete.

3. Proposed Genetic Algorithm

3.1 Overall GA Procedure

We adopt a traditional genetic algorithm procedure. <Figure
2> shows the procedure steps and the techniques used in
this paper. At the initial population creation step, a certain
number of individuals are generated using a circular queue
that uniformly allocates the machine and tool to be processed
on the operations in the individual. The next sub-section will
illustrate the detailed explanation on it. Next, all individuals
in the population are evaluated by a fitness function. Since
the objective of our IPPS is to minimize the makespan, which
is the completion time of all operations, decoding (scheduling
in IPPS) has to be performed on each individual. We use
a modified hybrid scheduling algorithm (MHS) that is a mod-
ification of Bierwirth and Mattfeld [3, 10]. Then, the GA
checks the termination condition that is a fixed number of
generations to be evolved. If the condition is passed, the al-
gorithm performs the selection, crossover, and mutation oper-
ations sequentially on the population. As a result, the off-
spring replaces the parents, and the new generation starts.

If the termination condition meets, the algorithm stops and
the current best solution becomes the final solution.

3.2 Individual Representation

Due to the high flexibility, a simply structured chromo-
some representation for IPPS is not allowed. The traditional
representation for IPPS [10, 15, 16, 17, 21], constructs sepa-
rate representations for each required information. For exam-
ple, the information on the machine allocation is stored in
individual W, the information on the tool allocation is stored
in individual X, the information on the execution order is
stored in individual Y, and the information on the selected
process route is stored in individual Z. Each of these does
not represent a complete manufacturing plan. Only when the
individuals W, X, Y, and Z are combined, a meaningful man-
ufacturing plan can be obtained and evaluated. Moreover,
the multiple types of individuals require multiple populations
to be evolved, which results in a complicated GA procedure
and a long calculation time.

To overcome these weaknesses and create a manageable
representation for IPPS, we propose a permutation repre-
sentation composed of entities that include all required infor-
mation. To represent the integrated manufacturing plan as
a single object, we created a new data structure, namely ope-
ration. Hereafter, the name of the new data structure will
be italicized to distinguish those from the existing terms. The
operation is composed of the following five attributes; job
number, operation number, machine number, tool number,
and processing time. For example, In <Figure 1(b)>, the op-
eration 4 of the job 3, i.e., , can be instantiated as an
operation, as shown in <Figure 3(a)>, in which all attributes
are assigned for scheduling.

An Improved Genetic Algorithm for Integrated Planning and Scheduling Algorithm Considering Tool Flexibility and Tool Constraints 115

<Figure 3(b)> shows a sample sequence of operations
called as operation string and a sample array of process
routes called as process string. Although the example shows
only several selected operations, the complete individual
must contain all the operations of whole jobs, including
dummy operations that are not actually performed by OR
relations. The operation string alone is not enough to make
a complete individual because there is no information about
which alternative process route is to be performed. The
process string provides such information. It is an array of
the numbers of the starting operations of the alternative
sequences at each OR relation. The length of the process
string is the sum of the number of OR relations in all jobs.
For example, In <Figure 1(a)>, job 1 has just one OR relation
having 2 alternative process routes ({2-3} and {4}), job 2
has 2 OR relations (the first one branches off to {1-2-3-4}
and {5-6-7} and the second one branches off to {2} and
{3}), and job 3 does not have any OR relations. Thus, the
length of the process string is 3 and can be denoted as an
array, e.g., [4, 5, 2] and [2, 1, 3].

3.3 Modified Hybrid Scheduling Algorithm

The individual composed of an operation string and a
process string is not a final solution for IPPS. The individual
must be decoded into a schedule with the information on
the chromosome. An operation is schedulable only if its pre-
decessors have been scheduled already. There are four types
of schedule : semi-active, active, non-delay, and hybrid. It
is well-known that the optimal schedule is an active schedule.
Bierwirth and Mattfeld [3, 10] proposed a hybrid scheduling
algorithm by modifying Giffler and Thompson [8], which
can generate an active and non-delay schedule. In this paper,
we adopted the scheduling algorithm, but partially modified
it to consider dummy nodes. The detailed procedure is as
follows and we follow notations of Kim et al. [10].

n : the number of jobs
 : the operation j of the job i
 : the earliest starting time of the operation 

 : the processing time of the operation 

    : the earliest completion time of the operation .

(1) Set j as 0 for all dummy operations.
(2) Construct a set A of all possible starting operations except

dummy operations. For example, in <Figure 1>,   
   if the process string is [2, 3, 5].

(3) Find  = min{  ∈} and let the machine of the
operation with  as .

(4) Construct a set B = { ∈ and  runs on }
and calculate  = min{  ∈}.

(5) Construct a set C : = {∈  ≤    

 ≤  ≤ }.
(6) Select the operation 

 at the left-most from C and delete
it from A.

(7) Append the operation 
 on the schedule and calculate

its starting and completion time.
(8) All the successors of operation 

 which are not dummy
nodes and their all predecessors have been scheduled.

(9) If A is not empty, go to (3). Otherwise, stop.

The design parameter θ determines the type of schedule, i.e.,
zero yields a non-delay schedule and one yields an active
schedule. In our algorithm, we set θ as 0.5 which is known
to be the best empirically by Kim et al. [10].

The MHS consumes much computing resources due to
frequent search processes. To overcome it, we developed an
index array which is a 2-dimentional array of indices of
operation. Through this, we can find out where the specific
operation is in the sequence without any search algorithm.
For example, in <Figure 3(b)>, the index of  is 3, so
the third row and fourth column component of the index
array is 3. That is, the index array is a lagged array which
row number corresponds to the job number and column
number corresponds to the operation number. Of course, the
search process can be used without the index array, but the
time complexity increases from  to  . It makes stark
difference for such a complex problem.

3.4 Fitness Function

According to Petrovic et al. [21], makespan is the most
popular objective function for IPPS. If the IPPS pursues
multi-objectives, tardiness, workload, and machine utilization
are considered further. In this paper, we choose the makespan
as a single objective. Our IPPS problem considers the con-
straints on tool magazine capacity and tool capacity. Thus,
although all precedence constraints are satisfied, it may result
in an infeasible solution if the number of used tool types
on a machine or the number of used tools on all machines
exceeds the tool and tool magazine capacities, respectively.
However, it is hard to check and repair the violation of those

Young-Nam Kim․Chunghun Ha116

constraints during genetic operations. It consumes a long com-
putation time and decreases exploitation capability. There-
fore, we imposes an amount of penalty [10] for the violation
of constraints as follows :

  


 




Here, tool penalty,  , denotes the excessive number
of the specified usage of tool t.  denotes the exce-
ssive number of the tool magazine capacity for machine m .
Where , ,  and  are parameters. At the end, the fitness
of an individual becomes fitness = 1/(makespan+penalty).

3.5 Initial Population

IPPS with a large solution space should maintain a suffi-
cient exploitation capability to derive an excellent optimal
solution and to prevent premature convergence of the GA.
The easiest way to solve this is to construct a large popula-
tion. However, it causes a long calculation time and makes
the GA’s efficiency worse. While generating an individual
that belongs to the initial population, all attributes of ope-
rations must be assigned. Otherwise, a fitness evaluation of
the individual is impossible. A typical random assignment
for the attributes limits the solution space if the population
size is small. For this reason, we propose a method that assigns
the attributes evenly using circular queues when constructing
the initial population. A circular queue consists of all com-
binations of possible resource assignments for each opera-
tion. For example, if  is processed on machine 1 using
tool 2, the combination of machine and tool can be denoted
as a tuple, (1, 2). In <Figure 1(b)>, all the possible com-
binations can be listed as follows; (1, 2), (1, 5), (1, 7), (3,
1), (3, 2), (3, 8). The circular queue corresponding to 
are generated by shuffling the list arbitrarily. While gene-
rating an individual, one element is taking out from the cir-
cular queue of the operation and the machine, tool, and
subsequent processing time of it is assigned into the ope-
ration. Then, the element is reinserted into the tail of the
circular queue. By doing this, all resources can be distributed
evenly. This helps to maintain a reasonable size of population
without serious loss of solution quality. An operation string
including dummy operations is generated by applying this
process iteratively. Finally, the operation string is shuffled
randomly. Since the proposed GA applies a sequence inde-
pendent hybrid scheduling, precedence constraints need not

be satisfied. The process string is also generated by arbi-
trarily selecting one of the starting operations of the alter-
native process routes on every OR relations.

3.6 Selection, Crossover, and Mutation

In GA, the selection operation is to select parents to per-
form the crossover and mutation operations. A typical binary
tournament selection is to randomly pick up two individuals
in the population and select the one with a higher fitness.
According to GA’s philosophy of inheriting superior genes,
the superior selection is appropriate. However, some recent
studies on IPPS [24, 25] show that the inferior selection
which selects an individual with lower fitness yields better
results than the superior selection. It is because the inferior
selection maintains exploitation capability and prevents pre-
mature convergence in IPPS with high complexity. We al-
ready applied the circular queue for the generation of the
initial population for this purpose, but the inferior selection
plays a role in supplementing it.

<Figure 4> PPX and Feasible Insertion

Since the chromosome is combined by the operation string
and the process string, a crossover and a mutation operation
should be performed respectively. For the operation string,
we adopt the well-known precedence preservative crossover
(PPX) [3, 4]. The PPX is performed as follows.

An Improved Genetic Algorithm for Integrated Planning and Scheduling Algorithm Considering Tool Flexibility and Tool Constraints 117

<Table 1> Benchmark Problems [10]

Problem Job number

Prm01 1, 2, 3, 10, 11, 12
Prm02 4, 5, 6, 13, 14, 15
Prm03 7, 8, 9, 16, 17, 18
Prm04 1, 4, 7, 10, 13, 16
Prm05 2, 5, 8, 11, 14, 17
Prm06 3, 6, 9, 12, 15, 18
Prm07 1, 4, 8, 12, 15, 17
Prm08 2, 6, 7, 10, 14, 18
Prm09 3, 5, 9, 11, 13, 16
Prm10 4, 5, 6, 10, 11, 12
Prm11 7, 8, 9, 13, 14, 15
Prm12 1, 2, 3, 16, 17, 18
Prm13 1, 2, 3, 5, 6, 10, 11, 12, 15
Prm14 4, 7, 8, 9, 13, 14, 16, 17, 18
Prm15 1, 4, 5, 7, 8, 10, 13, 14, 16
Prm16 2, 3, 6, 9, 11, 12, 15, 17, 18
Prm17 1, 2, 4, 7, 8, 12, 15, 17, 18
Prm18 3, 5, 6, 9, 10, 11, 13, 14, 16
Prm19 4, 5, 6, 7, 8, 9, 10, 11, 12
Prm20 1, 2, 3, 13, 14, 15, 16, 17, 18
Prm21 1, 2, 3, 4, 5, 6, 10, 11, 12, 13, 14, 15
Prm22 4, 5, 6, 7, 8, 9, 13, 14, 15, 16, 17, 18
Prm23 1, 2, 4, 5, 7, 8, 10, 11, 13, 14, 16, 17
Prm24 2, 3, 5, 6, 8, 9, 11, 12, 14, 15, 17, 18
Prm25 1, 2, 4, 6, 7, 8, 10, 12, 14, 15, 17, 18
Prm26 2, 3, 5, 6, 7, 9, 10, 11, 13, 14, 16, 18
Prm27 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
Prm28 1, 2, 3, 7, 8, 9, 13, 14, 15, 16, 17, 18
Prm29 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18
Prm30 1, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18
Prm31 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18

<Table 2> Tool Usage and Tool Magazine Constraint [10]

Tool magazine
capacity

Tool capacity

m Mcapa.
[slots] t Tcapa.

[EA]
Req.
slots t Tcapa.

[EA]
Req.
slots

1 28 1 6 1 11 7 1
2 31 2 7 2 12 10 2
3 38 3 6 2 13 9 3
4 28 4 6 2 14 8 2
5 36 5 10 1 15 6 2
6 37 6 6 2 16 10 2
7 29 7 10 3 17 9 1
8 28 8 9 2 18 6 2
9 29 9 7 1 19 8 2

10 26 10 5 2 20 7 3

(1) Generate an empty child operation string that has the
same length as the parents’ operation string.

(2) Select 1 or 2 randomly.
(3) If the number is 1 (2), copy the operation at the beginning

of P1 (P2) and append it to the child.
(4) Delete the operation with the same job number and oper-

ation number from both P1 and P2, respectively.
(5) If any element of parents remains, go back to step (2).

Otherwise, terminate the crossover operation.

As for mutation, we used a feasible insertion for the opera-
tion string. A selected operation is inserted at any position
between the immediate preceding and succeeding operation.

In process string, we do not perform any crossover oper-
ation because there was no significant difference in prelimi-
nary tests. However, for mutation, we employed one point
mutation for the process string, in which a randomly selected
element is replaced arbitrarily by one of the alternatives.

4. Experimental Results

A series of experiments were performed on the benchmark
problems proposed by Kim et al. [10]. <Table 1> shows the
31 problems with a total of 18 jobs (parts). <Table 2> shows
the information of the tool magazine capacity on each machine
(Mcapa.), tool capacity (Tcapa.), and the required number
of slots to mount each tool on a tool magazine (Req. slots).

All experiments were performed 10 times for each pro-
blem. The population size was set to be 300 regardless of
the problem. The termination condition is the number of gen-
eration, which is 300 generations for all problems. Also, we
assigned the crossover rate as 0.6 and the mutation rate as
0.05 for all problems. For the calculation of fitness, values
of 10, 10, 0.5 and 0.5 were used for      similar
to Kim et al. [10], respectively. The reason for it is to compare
fairly the performance of our proposed algorithm. The pro-
posed GA was implemented in Java and has been performed
on an Intel i7-5700HQ 2.7 GHz CPU.

<Table 3> and <Figure 5> present the comparison of the
results of the proposed algorithm with previous evolutionary
algorithms. Here, HEA represents the hierarchical evolutio-
nary algorithm [10] and AMSEA denotes the asymmetric
multileveled symbiotic evolutionary algorithm [10]. In the
table, the shortest makespans for each problem among the
algorithms are shown in bold. The improved rate indicates

the degree of improvement compared with the best makespan
among HEA and AMSEA. The gray cell denotes improved
solution.

Young-Nam Kim․Chunghun Ha118

<Table 3> Makespan Comparison of Various Evolutionary Algorithms

Problem

HEA [10] AMESA [10] IGA (Superior Selection) IGA (Inferior Selection)

best mean s.d. best average std best average std best average std
improved
rate [%]

Prm01 500 506.7 11.7 280 292.2 9.8 242 272.6 16.7 226 253.7 12.8 6.6
Prm02 389 398.1 15.1 237 257.3 9.4 261 284.2 15 253 268.9 13.7 -6.8
Prm03 385 391 8 234 246.6 7.1 245 279.7 20.9 246 262.9 10 -5.1
Prm04 276 288.8 19.6 211 219.1 5 237 254.4 16.1 233 242 10.6 -10.4
Prm05 304 314.7 22.7 207 214.2 5.6 229 250.7 9.5 205 233.7 17.3 1.0
Prm06 428 429.4 2.5 346 365.5 13.2 308 326.2 10.4 295 310.3 12.7 4.2
Prm07 279 295.4 15.7 235 263.4 12.8 266 293.2 13.8 250 276.7 17.7 -6.4
Prm08 354 357.5 5.3 250 258.8 6.6 258 280.2 15.9 228 253 14.5 8.8
Prm09 381 382 2.1 278 291.9 8.9 233 268 21.9 230 258 14.2 1.3
Prm10 347 349.1 4.2 266 284.1 7.9 286 301.3 9 270 289.3 15.6 -1.5
Prm11 317 319.5 4.2 230 243.3 12.1 257 273.4 10.8 229 247.7 14.6 0.4
Prm12 342 349 9.9 269 286.3 12.9 233 254.2 12.3 203 226.8 13.3 12.9
Prm13 432 441.8 8.4 365 379.6 10.5 328 353.6 14 304 341.4 15.8 7.3
Prm14 362 394.2 21 309 335.1 16.5 337 351.5 9.9 321 351.8 20.6 -3.9
Prm15 335 341.5 5.7 277 283.3 5.9 298 318.1 15.9 267 296 17.4 3.6
Prm16 438 480.2 21.3 397 421.9 14.5 357 384.4 18.8 351 370.8 13.3 1.7
Prm17 521 522.8 3 385 399.9 8.4 340 371 14.6 330 351 13.6 2.9
Prm18 395 422.2 16.2 364 370.7 5.7 323 346 13.7 307 330.7 18 5.0
Prm19 400 428.6 21.9 370 383.2 7.5 380 411.3 20.5 358 387.5 16.4 3.2
Prm20 380 384.7 4.1 335 343.1 7.3 302 317.5 17.4 284 298.5 11.8 6.0
Prm21 548 549.6 2.6 448 465.1 9.8 408 433 20.9 397 421.4 16.1 2.7
Prm22 485 514.1 17.5 407 426.5 12.4 406 444 21.8 392 429.7 22.4 3.4
Prm23 394 443.7 24.4 351 362.9 8.3 378 395.4 10.9 364 386.5 14.9 -3.7
Prm24 534 587.5 27.3 484 500.2 7.4 400 449 21.4 418 459.7 18.2 -4.5
Prm25 482 531.3 31.2 422 448.7 13.7 427 453.2 20.4 416 439.8 14.3 1.4
Prm26 492 529.5 28.6 428 455.1 13.9 429 444.6 12.5 400 428.2 17.4 6.5
Prm27 472 508.1 32 411 435.6 12.5 431 454.2 15.7 365 424.4 23.5 11.2
Prm28 487 518.2 30.7 415 440.3 14.4 364 410 21 378 399.7 15.7 -3.8
Prm29 611 638.1 21.7 554 580.2 13.7 507 537.3 20.5 489 521.8 16.5 3.6
Prm30 573 602.1 11.6 499 526.6 13 483 524.8 20.3 473 522.2 22.6 2.1
Prm31 714 753 32.7 639 669.2 19.2 570 608.7 23.2 572 595.3 12.1 -0.4

<Figure 5> Best Makespan Comparison

The results show that our proposed algorithm (IGA), parti-
cularly inferior selection mechanism, is much better than those
of HEA and AMSEA. Although direct comparison of compu-
tation time is impossible, the results are satisfactory under
the given population size of 300 individuals and the termina-
tion condition of 300 generations.

5. Conclusion

In this paper, we proposed an improved genetic algorithm

An Improved Genetic Algorithm for Integrated Planning and Scheduling Algorithm Considering Tool Flexibility and Tool Constraints 119

for IPPS with tool flexibility and tool related constraints.
Experiments on the benchmark problems proved that the pro-
posed GA is superior to the existing best algorithm. In a
practical manufacturing environment, if the subsequent oper-
ation uses another machine, the loading and unloading times
of the workpiece is essential. Additional setup time should
also be considered if the orientation of the tool or workpiece
changes on the same machine. The IPPS in this paper as-
sumed that these times are included in the processing time.
Future studies will cover more realistic IPPS by considering
such times.

Acknowledgement

This research was supported by Basic Science Research
Program through the National Research Foundation of Korea
(NRF) funded by the Ministry of Education (2015R1D1A1A
01060391).

References

 [1] Atashpaz-Gargari, E. and Lucas, C., Imperialist compe-
titive algorithm : An algorithm for optimization inspired
by imperialistic competition, 2007 IEEE Congress on
Evolutionary Computation, CEC 2007, 2007, pp. 4661-
4667.

 [2] Ausaf, M.F., Li, X., and Gao, L., Optimization Algo-
rithms for Integrated Process Planning and Scheduling
Problem-A Survey, 2014, pp. 5278-5283.

 [3] Bierwirth, C. and Mattfeld, D.C., Production scheduling
and rescheduling with genetic algorithms, Evolutionary
computation, 1999, Vol. 7, No. 1, pp. 1-17.

 [4] Blanton Jr, J.L. and Wainwright, R.L., Multiple vehicle
routing with time and capacity constraint using genetic
algorithms, Proceedings of the Fifth International Con-
ference on Genetic Algorithms, 1993, pp. 452-459.

 [5] Chaudhry, I.A. and Khan, A.A., A research survey :
Review of flexible job shop scheduling techniques, Inter-
national Transactions in Operational Research, 2016,
Vol. 23, No. 3, pp. 551-591.

 [6] Cho, S., Lee, H., and Kim, S., A Study on Dynamic
Scheduling in Flexible Manufacturing System Environ-
ment, Journal of the Society of Korea Industrial and
Systems Engineering, 2004, Vol. 27, No. 2, pp. 17-23.

 [7] Cinar, D., Oliveira, J.A., Topcu, Y.I., and Pardalos,
P.M., A priority-based genetic algorithm for a flexible

job shop scheduling problem, Journal of Industrial and
Management Optimization, 2016, Vol. 12, No. 4, pp.
1391-1415.

 [8] Giffler, B. and Thompson, G.L., Algorithms for Solving
Production-Scheduling Problems, Operations Research,
1960, Vol. 8, No. 4, pp. 487-503.

 [9] Ho, Y.-C. and Moodie, C.L., Solving cell formation
problems in a manufacturing environment with flexible
processing and routeing capabilities, International Jour-
nal of Production Research, 1996, Vol. 34, No. 10, pp.
2901-2923.

[10] Kim, Y.K., Kim, J.Y., and Shin, K.S., An asymmetric
multileveled symbiotic evolutionary algorithm for inte-
grated FMS scheduling, Journal of Intelligent Manufac-
turing, 2007, Vol. 18, No. 6, pp. 631-645.

[11] Kim, Y.K., Park, K., and Ko, J., A symbiotic evolu-
tionary algorithm for the integration of process planning
and job shop scheduling, Computers & Operations Re-
search, 2003, Vol. 30, No. 8, pp. 1151-1171.

[12] Lee, D., Applying tabu search to multiprocessor task
scheduling problem with precedence relations, Journal
of the Society of Korea Industrial and Systems Engi-
neering, 2004, Vol. 27, No. 4, pp. 1-6.

[13] Li, X., Gao, L., and Shao, X., An active learning genetic
algorithm for integrated process planning and schedu-
ling, Expert Systems with Applications, 2012, Vol. 39,
No. 8, pp. 6683-6691.

[14] Li, X., Gao, L., Shao, X., Zhang, C., and Wang, C.,
Mathematical modeling and evolutionary algorithm-
based approach for integrated process planning and
scheduling, Computers & Operations Research, 2010,
Vol. 37, No. 4, pp. 656-667.

[15] Li, X., Shao, X., Gao, L., and Qian, W., An effective
hybrid algorithm for integrated process planning and
scheduling, International Journal of Production Econo-
mics, 2010, Vol. 126, No. 2, pp. 289-298.

[16] Lian, K., Zhang, C., Gao, L., and Li, X., Integrated
process planning and scheduling using an imperialist
competitive algorithm, International Journal of Produc-
tion Research, 2012, Vol. 5015, No. 15, pp. 4326-4343.

[17] Liu, M., Sun, Z.J., Yan, J.W., and Kang, J.S., An adap-
tive annealing genetic algorithm for the job-shop plan-
ning and scheduling problem, Expert Systems with Appli-
cations, 2011, Vol. 38, No. 8, pp. 9248-9255.

[18] MORAD, N. and A. Zalzala, Genetic algorithms in in-
tegrated process planning and scheduling, Journal of

Young-Nam Kim․Chunghun Ha120

Intelligent Manufacturing, 1999, Vol. 10, No. 2, pp. 169-
179.

[19] Nasr, N. and Elsayed, E.A., Job shop scheduling with
alternative machines, International Journal of Produc-
tion Research, 1990, Vol. 28, No. 9, pp. 1595-1609.

[20] Park, B.J. and Lee, S.W., Job Shop Scheduling with
Evolutionary Algorithms, Journal of The Korean Institute
of Plant Engineering, 2000, Vol. 5, No. 2, pp. 95-102.

[21] Petrovic, M., Vukovic, N., Mitic, M., and Miljkovic,
Z., Integration of process planning and scheduling using
chaotic particle swarm optimization algorithm, Expert
Systems with Applications, 2016, Vol. 64, pp. 569-588.

[22] Shao, X.Y., Li, X.Y., Gao, L., and Zhang, C.Y., Integra-
tion of process planning and scheduling-A modified ge-
netic algorithm-based approach, Journal of Computers &
Operations Research, 2009, Vol. 36, No. 6, pp. 2082-2096.

[23] Thomalla, C.S., Job shop scheduling with alternative
process plans, International Journal of Production Eco-
nomics, 2001, Vol. 74, No. 1-3, pp. 125-134.

[24] Zhang, L. and Wong, T.N., An object-coding genetic
algorithm for integrated process planning and schedul-
ing, European Journal of Operational Research, 2015,
Vol. 244, No. 2, pp. 434-444.

[25] Zhang, S., Yu, Z., Zhang, W., Yu, D., and Xu, Y.,
An Extended Genetic Algorithm for Distributed Integra-
tion of Fuzzy Process Planning and Scheduling, Mathe-
matical Problems in Engineering, 2016, Vol. 2016, pp.
1-13.

ORCID
Young-Nam Kim | http://orcid.org/0000-0002-0762-6896
Chunghun Ha | http://orcid.org/0000-0002-4222-2555

