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This paper proposes an improved standard genetic algorithm (GA) of making a near optimal schedule for integrated process 
planning and scheduling problem (IPPS) considering tool flexibility and tool related constraints. Process planning involves the 
selection of operations and the allocation of resources. Scheduling, meanwhile, determines the sequence order in which operations 
are executed on each machine. Due to the high degree of complexity, traditionally, a sequential approach has been preferred, 
which determines process planning firstly and then performs scheduling independently based on the results. The two sub-problems, 
however, are complicatedly interrelated to each other, so the IPPS tend to solve the two problems simultaneously. Although 
many studies for IPPS have been conducted in the past, tool flexibility and capacity constraints are rarely considered. Various 
meta-heuristics, especially GA, have been applied for IPPS, but the performance is yet satisfactory. To improve solution quality 
against computation time in GA, we adopted three methods. First, we used a random circular queue during generation of an 
initial population. It can provide sufficient diversity of individuals at the beginning of GA. Second, we adopted an inferior selection 
to choose the parents for the crossover and mutation operations. It helps to maintain exploitation capability throughout the evolution 
process. Third, we employed a modification of the hybrid scheduling algorithm to decode the chromosome of the individual 
into a schedule, which can generate an active and non-delay schedule. The experimental results show that our proposed algorithm 
is superior to the current best evolutionary algorithms at most benchmark problems. 
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1. Introduction 

Integrated process planning and scheduling problem (IPPS) 
is a mixture of process planning and scheduling. Process 
planning contains sub-problems of routing and loading. Rou-
ting focuses on determining which sequence to use among 
the replaceable operational sequences, and loading is a prob-
lem of determining which resources such as machines and 
tools are allocated to the operation for execution. A variety 
of resources and alternative sequences are available in manu-
facturing for the same manufacturing feature. On the other 
hand, scheduling is a problem of determining when the oper-
ations start and end on each machine, assuming that a process 
plan has been determined [6, 20]. 

In IPPS, several flexibilities and constraints have been 
considered. Process flexibility means that there are alter-
native operation sequences to be performed in a job. Sequence 
flexibility is a changeability of sequence order of operations. 
Machine and tool flexibilities imply that an operation can 
be performed on alternative machines with alternative tools 
and tool access direction, respectively. Process planning is 
related to the process, machine, and tool flexibilities, and 
scheduling targets the sequence flexibility. Each machine (or 
machining center) has a tool magazine that can mount multi-
ple tools, thus can handle many kinds of operations in a 
machine. In practice, since the magazine capacity and the 
number of tools are limited, efficient decision-making is re-
quired under the limited manufacturing resources. 

Due to the high degree of complexity, traditionally, a se-
quential approach has been preferred for IPPS, which de-
termines process planning firstly and then performs schedul-
ing independently based on the results. However, the two 
sub-problems are intricately interwoven. Thus, the optimal 
process plan does not result in the optimal schedule. Even 
the optimal process plan can lead to an infeasible schedule 
[19, 23]. It highlights the importance of the IPPS which solve 
both sub-problems simultaneously. 

There is a myriad of alternative solutions in IPPS due to 
various flexibilities. It makes the problem complicated, but 
at the same time, it has the considerable potential to improve 
the performance of the system. Since IPPS is NP-hard [10], 
meta-heuristics have been mainly applied as optimization 
methods. According to Ausaf et al. [2] and Petrović et al. 
[21], GA, ant colony optimization (ACO), particle swarm 
optimization (PSO), and various memetic heuristics com-
bined with these have frequently been applied for IPPS [12]. 

Among them, GA is the most preferred. With IPPS having 
a huge solution space, the superior exploitation capability 
of GA is advantageous to improve the solution quality.

There are abundant studies to solve IPPS using GA. Morad 
and Zalzala [18] proposed a simple GA for IPPS considering 
machine flexibility only. To deal with various flexibilities 
such as process, sequence, and machine in IPPS, Kim et al. 
[11] introduced a symbiotic evolutionary algorithm that mim-
ics the process of coevolution of various species. Kim et 
al. [10] improved their previous study by proposing a mul-
ti-layered symbiotic evolutionary algorithm for IPPS, which 
considers tool flexibility, tool magazine capacity constraint, 
and tool capacity constraint additionally compared to previous 
IPPS. Shao et al. [22] proposed a GA that establishes an 
optimal plan reflecting the real-time status of the shop floor. 
Liu et al. [17] developed an adaptive annealing genetic algo-
rithm for IPPS in a job shop, which adopts Boltzmann proba-
bility selection using adaptive mutation probability and simu-
lated annealing to avoid premature convergence. Li et al. 
[14] presented a mathematical programming modeling for 
IPPS and optimized it by an evolutionary algorithm. Li et 
al. [15] also proposed a hybrid algorithm that uses the GA 
as the main algorithm and applies the Tabu search to further 
improve the solution. Li et al. [13] proposed a GA that im-
proves premature convergence by a learning operator that 
perform a crossover operation between the currently selected 
solution and the current best solution or the generation’s best 
solution. Lian et al. [16] applied the imperialist competitive 
algorithm [1] to enhance exploitation, which evolves empires 
consisting of an imperialist and colonies in parallel. Zhang 
and Wong [24] proposed a GA with object-coding representa-
tion, inferior selection, job-based precedence preservative cross-
over, shifting gene and shifting machine mutations, and crow-
ding replacement scheme. Cinar et al. [7] proposed a construc-
tive GA based on the Giffler-Thompson algorithm [8] for 
flexible job shop scheduling, in which a priority-based repre-
sentation that consists of the priority of operations is used.

Although many studies using GA for IPPS have been con-
ducted in the past, tool flexibility and capacity constraints 
are not considered except for Kim et al. [10]. Also, most 
studies use the problem set of Kim et al. [11] as a benchmark 
to evaluate the performance of their algorithms. This paper, 
which considers tool flexibility and capacity constraints, uses 
the new problem set of Kim et al. [10] as a benchmark. 
In this respect, this study is different from the existing studies. 

In this paper, we aim at developing an improved genetic 
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<Figure 1> An Example of IPPS with Three Jobs [10]

algorithm for IPPS with tool flexibility and tool related 
constraints. We adopted a traditional genetic algorithm proce-
dure, but we employed three methods to improve solution 
quality and computation time. The first is the initial population 
generation using a random circular queue. It binds the pop-
ulation size, which decreases computation time critically. 
Second, we adopted an inferior selection to maintain exploi-
tation capability in the evolution process. Third, we employed 
a modification of the hybrid scheduling algorithm [3, 10] 
to decode the chromosome of the individual into a schedule. 

We organized this paper as follows. Section 2 explains 
IPPS in detail after the description on flexibilities for the 
flexible manufacturing system and network representation. 
The proposed genetic algorithm is introduced in Section 3. 
Section 4 is prepared for describing the experimental parame-
ters and results. Finally, we conclude and discuss our re-
search in Section 5.

2. IPPS Problem

A simple description of the IPPS problem is as follows [5]. 
(1) There is a set of  jobs to be processed on   machines, 

    ⋯ 

(2) The job  consists of a sequence of   operations, 
  ⋯ 



(3) The set of  tools is noted as T = {  ⋯ }
(4) Each operation must be assigned a machine and a tool 

for execution. Let  and  be assigned on the . 
Then, processing time of  is . 

We assume following operating conditions: 
(a) All machines are available at the starting time of sche-

duling.
(b) All jobs are prepared at the starting time of scheduling.
(c) A machine cannot process multiple operations simultane-

ously.
(d) Each operation must be processed at once, that is, it can-

not be separated.
(e) If it is not defined in the network representation, there 

are no precedence constraints among the operations. 
(f) Pre-emption of an operation is not allowed. 
(g) Processing time includes transportation time and setup 

time.

We will illustrate the problem in detail using the network 
representation by Ho and Moodie [9]. <Figure 1> shows a 

simple example of an IPPS. There are a total of three jobs, 
job 1, job 2, and job 3, each of which is a network of oper-
ation nodes. The node number is the identifier of an operation 
in the job, that is, the operation 1 of job 1 and the operation 
1 of job 2 may be different. Each job network has two dummy 
nodes indicating the start (S1, S2, and S3) and the end of 
the job (E1, E2, and E3). Arrowed lines indicate precedence 
constraints. The operations with the tail of the arrowed line 
are the immediate predecessors of the operation indicated 
by the head of the arrow. That is, the head operation must 
be processed after the tail operation is completed. For exam-
ple, operation 1 of job 1 must be completed before operation 
2 of the job is executed. They cannot be processed simulta-
neously, and succeeding operations cannot be pre-processed. 

In the network representation, OR notation implies process 
flexibility, only one branch can be selected for processing. 
If a schedule does not satisfy any precedence constraint, it 
becomes infeasible. In the network representation, the bran-
ching node without OR notation such as operation 1 in job 3 
denotes an AND node that all operations belonging to the 
branch must be processed to complete the job. For instance, 
job 1 consists of 9 nodes, 1 AND node (S1), 1 OR node 
(operation 1), and seven ordinary nodes (operation 2 to 7 
and E1). The S1 node has two process routes (operation 1 
to 5 and 6-7) and both routes have to be processed because 
it is an AND node. The operation 1, on the other hands, 
is an OR node which has two process routes, (2-3) and (4). 
They can produce the same manufacturing features. This 
means that we can choose either one, and the unselected 
one is not taken into account when creating a schedule. For 
example, If (4) is selected, then operation 2 and 3 become 
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<Figure 2> Steps of GA and Used Methods <Figure 3> The Representation of Operation and a Sequence

dummy operations. In the opposite case, operation 4 becomes 
a dummy operation. 

Finally, we have to determine which machines and tools 
will process the operations. In <Figure 1(b)>, it shows the 
possible combination of alternative machines and tools which 
process the operation 4 of job 3. It also presents the process-
ing times depending on the decisions. For example, if oper-
ation 4 is run on machine 3 using tool 8, it will take 14-time 
units to complete.

3. Proposed Genetic Algorithm 

3.1 Overall GA Procedure

We adopt a traditional genetic algorithm procedure. <Figure 
2> shows the procedure steps and the techniques used in 
this paper. At the initial population creation step, a certain 
number of individuals are generated using a circular queue 
that uniformly allocates the machine and tool to be processed 
on the operations in the individual. The next sub-section will 
illustrate the detailed explanation on it. Next, all individuals 
in the population are evaluated by a fitness function. Since 
the objective of our IPPS is to minimize the makespan, which 
is the completion time of all operations, decoding (scheduling 
in IPPS) has to be performed on each individual. We use 
a modified hybrid scheduling algorithm (MHS) that is a mod-
ification of Bierwirth and Mattfeld [3, 10]. Then, the GA 
checks the termination condition that is a fixed number of 
generations to be evolved. If the condition is passed, the al-
gorithm performs the selection, crossover, and mutation oper-
ations sequentially on the population. As a result, the off-
spring replaces the parents, and the new generation starts. 

If the termination condition meets, the algorithm stops and 
the current best solution becomes the final solution.

3.2 Individual Representation

Due to the high flexibility, a simply structured chromo-
some representation for IPPS is not allowed. The traditional 
representation for IPPS [10, 15, 16, 17, 21], constructs sepa-
rate representations for each required information. For exam-
ple, the information on the machine allocation is stored in 
individual W, the information on the tool allocation is stored 
in individual X, the information on the execution order is 
stored in individual Y, and the information on the selected 
process route is stored in individual Z. Each of these does 
not represent a complete manufacturing plan. Only when the 
individuals W, X, Y, and Z are combined, a meaningful man-
ufacturing plan can be obtained and evaluated. Moreover, 
the multiple types of individuals require multiple populations 
to be evolved, which results in a complicated GA procedure 
and a long calculation time.

To overcome these weaknesses and create a manageable 
representation for IPPS, we propose a permutation repre-
sentation composed of entities that include all required infor-
mation. To represent the integrated manufacturing plan as 
a single object, we created a new data structure, namely ope-
ration. Hereafter, the name of the new data structure will 
be italicized to distinguish those from the existing terms. The 
operation is composed of the following five attributes; job 
number, operation number, machine number, tool number, 
and processing time. For example, In <Figure 1(b)>, the op-
eration 4 of the job 3, i.e., , can be instantiated as an 
operation, as shown in <Figure 3(a)>, in which all attributes 
are assigned for scheduling. 
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<Figure 3(b)> shows a sample sequence of operations 
called as operation string and a sample array of process 
routes called as process string. Although the example shows 
only several selected operations, the complete individual 
must contain all the operations of whole jobs, including 
dummy operations that are not actually performed by OR 
relations. The operation string alone is not enough to make 
a complete individual because there is no information about 
which alternative process route is to be performed. The 
process string provides such information. It is an array of 
the numbers of the starting operations of the alternative 
sequences at each OR relation. The length of the process 
string is the sum of the number of OR relations in all jobs. 
For example, In <Figure 1(a)>, job 1 has just one OR relation 
having 2 alternative process routes ({2-3} and {4}), job 2 
has 2 OR relations (the first one branches off to {1-2-3-4} 
and {5-6-7} and the second one branches off to {2} and 
{3}), and job 3 does not have any OR relations. Thus, the 
length of the process string is 3 and can be denoted as an 
array, e.g., [4, 5, 2] and [2, 1, 3].

3.3 Modified Hybrid Scheduling Algorithm

The individual composed of an operation string and a 
process string is not a final solution for IPPS. The individual 
must be decoded into a schedule with the information on 
the chromosome. An operation is schedulable only if its pre-
decessors have been scheduled already. There are four types 
of schedule : semi-active, active, non-delay, and hybrid. It 
is well-known that the optimal schedule is an active schedule. 
Bierwirth and Mattfeld [3, 10] proposed a hybrid scheduling 
algorithm by modifying Giffler and Thompson [8], which 
can generate an active and non-delay schedule. In this paper, 
we adopted the scheduling algorithm, but partially modified 
it to consider dummy nodes. The detailed procedure is as 
follows and we follow notations of Kim et al. [10].

n : the number of jobs
 : the operation j of the job i
 : the earliest starting time of the operation 

 : the processing time of the operation 

    : the earliest completion time of the operation .

(1) Set j as 0 for all dummy operations. 
(2) Construct a set A of all possible starting operations except 

dummy operations. For example, in <Figure 1>,    
   if the process string is [2, 3, 5]. 

(3) Find  = min{  ∈} and let the machine of the 
operation with  as .

(4) Construct a set B = { ∈ and  runs on } 
and calculate  = min{  ∈}.

(5) Construct a set C : = {∈  ≤    

 ≤  ≤ }.
(6) Select the operation 

  at the left-most from C and delete 
it from A.

(7) Append the operation 
  on the schedule and calculate 

its starting and completion time.
(8) All the successors of operation 

  which are not dummy 
nodes and their all predecessors have been scheduled.

(9) If A is not empty, go to (3). Otherwise, stop.

The design parameter θ determines the type of schedule, i.e., 
zero yields a non-delay schedule and one yields an active 
schedule. In our algorithm, we set θ as 0.5 which is known 
to be the best empirically by Kim et al. [10]. 

The MHS consumes much computing resources due to 
frequent search processes. To overcome it, we developed an 
index array which is a 2-dimentional array of indices of 
operation. Through this, we can find out where the specific 
operation is in the sequence without any search algorithm. 
For example, in <Figure 3(b)>, the index of  is 3, so 
the third row and fourth column component of the index 
array is 3. That is, the index array is a lagged array which 
row number corresponds to the job number and column 
number corresponds to the operation number. Of course, the 
search process can be used without the index array, but the 
time complexity increases from   to  . It makes stark 
difference for such a complex problem. 

3.4 Fitness Function

According to Petrovic et al. [21], makespan is the most 
popular objective function for IPPS. If the IPPS pursues 
multi-objectives, tardiness, workload, and machine utilization 
are considered further. In this paper, we choose the makespan 
as a single objective. Our IPPS problem considers the con-
straints on tool magazine capacity and tool capacity. Thus, 
although all precedence constraints are satisfied, it may result 
in an infeasible solution if the number of used tool types 
on a machine or the number of used tools on all machines 
exceeds the tool and tool magazine capacities, respectively. 
However, it is hard to check and repair the violation of those 
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constraints during genetic operations. It consumes a long com-
putation time and decreases exploitation capability. There-
fore, we imposes an amount of penalty [10] for the violation 
of constraints as follows : 

  


 




Here, tool penalty,  , denotes the excessive number 
of the specified usage of tool t.   denotes the exce-
ssive number of the tool magazine capacity for machine m . 
Where , ,   and   are parameters. At the end, the fitness 
of an individual becomes fitness = 1/(makespan+penalty).

3.5 Initial Population

IPPS with a large solution space should maintain a suffi-
cient exploitation capability to derive an excellent optimal 
solution and to prevent premature convergence of the GA. 
The easiest way to solve this is to construct a large popula-
tion. However, it causes a long calculation time and makes 
the GA’s efficiency worse. While generating an individual 
that belongs to the initial population, all attributes of ope-
rations must be assigned. Otherwise, a fitness evaluation of 
the individual is impossible. A typical random assignment 
for the attributes limits the solution space if the population 
size is small. For this reason, we propose a method that assigns 
the attributes evenly using circular queues when constructing 
the initial population. A circular queue consists of all com-
binations of possible resource assignments for each opera-
tion. For example, if  is processed on machine 1 using 
tool 2, the combination of machine and tool can be denoted 
as a tuple, (1, 2). In <Figure 1(b)>, all the possible com-
binations can be listed as follows; (1, 2), (1, 5), (1, 7), (3, 
1), (3, 2), (3, 8). The circular queue corresponding to  
are generated by shuffling the list arbitrarily. While gene-
rating an individual, one element is taking out from the cir-
cular queue of the operation and the machine, tool, and 
subsequent processing time of it is assigned into the ope-
ration. Then, the element is reinserted into the tail of the 
circular queue. By doing this, all resources can be distributed 
evenly. This helps to maintain a reasonable size of population 
without serious loss of solution quality. An operation string 
including dummy operations is generated by applying this 
process iteratively. Finally, the operation string is shuffled 
randomly. Since the proposed GA applies a sequence inde-
pendent hybrid scheduling, precedence constraints need not 

be satisfied. The process string is also generated by arbi-
trarily selecting one of the starting operations of the alter-
native process routes on every OR relations.

3.6 Selection, Crossover, and Mutation

In GA, the selection operation is to select parents to per-
form the crossover and mutation operations. A typical binary 
tournament selection is to randomly pick up two individuals 
in the population and select the one with a higher fitness. 
According to GA’s philosophy of inheriting superior genes, 
the superior selection is appropriate. However, some recent 
studies on IPPS [24, 25] show that the inferior selection 
which selects an individual with lower fitness yields better 
results than the superior selection. It is because the inferior 
selection maintains exploitation capability and prevents pre-
mature convergence in IPPS with high complexity. We al-
ready applied the circular queue for the generation of the 
initial population for this purpose, but the inferior selection 
plays a role in supplementing it. 

<Figure 4> PPX and Feasible Insertion

Since the chromosome is combined by the operation string 
and the process string, a crossover and a mutation operation 
should be performed respectively. For the operation string, 
we adopt the well-known precedence preservative crossover 
(PPX) [3, 4]. The PPX is performed as follows.
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<Table 1> Benchmark Problems [10]

Problem Job number

Prm01 1, 2, 3, 10, 11, 12
Prm02 4, 5, 6, 13, 14, 15
Prm03 7, 8, 9, 16, 17, 18
Prm04 1, 4, 7, 10, 13, 16
Prm05 2, 5, 8, 11, 14, 17
Prm06 3, 6, 9, 12, 15, 18
Prm07 1, 4, 8, 12, 15, 17
Prm08 2, 6, 7, 10, 14, 18
Prm09 3, 5, 9, 11, 13, 16
Prm10 4, 5, 6, 10, 11, 12
Prm11 7, 8, 9, 13, 14, 15
Prm12 1, 2, 3, 16, 17, 18
Prm13 1, 2, 3, 5, 6, 10, 11, 12, 15
Prm14 4, 7, 8, 9, 13, 14, 16, 17, 18
Prm15 1, 4, 5, 7, 8, 10, 13, 14, 16
Prm16 2, 3, 6, 9, 11, 12, 15, 17, 18
Prm17 1, 2, 4, 7, 8, 12, 15, 17, 18
Prm18 3, 5, 6, 9, 10, 11, 13, 14, 16
Prm19 4, 5, 6, 7, 8, 9, 10, 11, 12
Prm20 1, 2, 3, 13, 14, 15, 16, 17, 18
Prm21 1, 2, 3, 4, 5, 6, 10, 11, 12, 13, 14, 15
Prm22 4, 5, 6, 7, 8, 9, 13, 14, 15, 16, 17, 18
Prm23 1, 2, 4, 5, 7, 8, 10, 11, 13, 14, 16, 17
Prm24 2, 3, 5, 6, 8, 9, 11, 12, 14, 15, 17, 18
Prm25 1, 2, 4, 6, 7, 8, 10, 12, 14, 15, 17, 18
Prm26 2, 3, 5, 6, 7, 9, 10, 11, 13, 14, 16, 18
Prm27 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
Prm28 1, 2, 3, 7, 8, 9, 13, 14, 15, 16, 17, 18
Prm29 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18
Prm30 1, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18
Prm31 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18

<Table 2> Tool Usage and Tool Magazine Constraint [10]

Tool magazine 
capacity

Tool capacity

m Mcapa.
[slots] t Tcapa.

[EA]
Req.
slots t Tcapa.

[EA]
Req.
slots

1 28 1 6 1 11 7 1
2 31 2 7 2 12 10 2
3 38 3 6 2 13 9 3
4 28 4 6 2 14 8 2
5 36 5 10 1 15 6 2
6 37 6 6 2 16 10 2
7 29 7 10 3 17 9 1
8 28 8 9 2 18 6 2
9 29 9 7 1 19 8 2

10 26 10 5 2 20 7 3

(1) Generate an empty child operation string that has the 
same length as the parents’ operation string. 

(2) Select 1 or 2 randomly. 
(3) If the number is 1 (2), copy the operation at the beginning 

of P1 (P2) and append it to the child.
(4) Delete the operation with the same job number and oper-

ation number from both P1 and P2, respectively. 
(5) If any element of parents remains, go back to step (2). 

Otherwise, terminate the crossover operation.

As for mutation, we used a feasible insertion for the opera-
tion string. A selected operation is inserted at any position 
between the immediate preceding and succeeding operation. 

In process string, we do not perform any crossover oper-
ation because there was no significant difference in prelimi-
nary tests. However, for mutation, we employed one point 
mutation for the process string, in which a randomly selected 
element is replaced arbitrarily by one of the alternatives. 

4. Experimental Results 

A series of experiments were performed on the benchmark 
problems proposed by Kim et al. [10]. <Table 1> shows the 
31 problems with a total of 18 jobs (parts). <Table 2> shows 
the information of the tool magazine capacity on each machine 
(Mcapa.), tool capacity (Tcapa.), and the required number 
of slots to mount each tool on a tool magazine (Req. slots).

All experiments were performed 10 times for each pro-
blem. The population size was set to be 300 regardless of 
the problem. The termination condition is the number of gen-
eration, which is 300 generations for all problems. Also, we 
assigned the crossover rate as 0.6 and the mutation rate as 
0.05 for all problems. For the calculation of fitness, values 
of 10, 10, 0.5 and 0.5 were used for       similar 
to Kim et al. [10], respectively. The reason for it is to compare 
fairly the performance of our proposed algorithm. The pro-
posed GA was implemented in Java and has been performed 
on an Intel i7-5700HQ 2.7 GHz CPU. 

<Table 3> and <Figure 5> present the comparison of the 
results of the proposed algorithm with previous evolutionary 
algorithms. Here, HEA represents the hierarchical evolutio-
nary algorithm [10] and AMSEA denotes the asymmetric 
multileveled symbiotic evolutionary algorithm [10]. In the 
table, the shortest makespans for each problem among the 
algorithms are shown in bold. The improved rate indicates 

the degree of improvement compared with the best makespan 
among HEA and AMSEA. The gray cell denotes improved 
solution. 
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<Table 3> Makespan Comparison of Various Evolutionary Algorithms

Problem

HEA [10] AMESA [10] IGA (Superior Selection) IGA (Inferior Selection)

best mean s.d. best average std best average std best average std
improved
rate [%]

Prm01 500 506.7 11.7 280 292.2 9.8 242 272.6 16.7 226 253.7 12.8 6.6
Prm02 389 398.1 15.1 237 257.3 9.4 261 284.2 15 253 268.9 13.7 -6.8
Prm03 385 391 8 234 246.6 7.1 245 279.7 20.9 246 262.9 10 -5.1
Prm04 276 288.8 19.6 211 219.1 5 237 254.4 16.1 233 242 10.6 -10.4
Prm05 304 314.7 22.7 207 214.2 5.6 229 250.7 9.5 205 233.7 17.3 1.0
Prm06 428 429.4 2.5 346 365.5 13.2 308 326.2 10.4 295 310.3 12.7 4.2
Prm07 279 295.4 15.7 235 263.4 12.8 266 293.2 13.8 250 276.7 17.7 -6.4
Prm08 354 357.5 5.3 250 258.8 6.6 258 280.2 15.9 228 253 14.5 8.8
Prm09 381 382 2.1 278 291.9 8.9 233 268 21.9 230 258 14.2 1.3
Prm10 347 349.1 4.2 266 284.1 7.9 286 301.3 9 270 289.3 15.6 -1.5
Prm11 317 319.5 4.2 230 243.3 12.1 257 273.4 10.8 229 247.7 14.6 0.4
Prm12 342 349 9.9 269 286.3 12.9 233 254.2 12.3 203 226.8 13.3 12.9
Prm13 432 441.8 8.4 365 379.6 10.5 328 353.6 14 304 341.4 15.8 7.3
Prm14 362 394.2 21 309 335.1 16.5 337 351.5 9.9 321 351.8 20.6 -3.9
Prm15 335 341.5 5.7 277 283.3 5.9 298 318.1 15.9 267 296 17.4 3.6
Prm16 438 480.2 21.3 397 421.9 14.5 357 384.4 18.8 351 370.8 13.3 1.7
Prm17 521 522.8 3 385 399.9 8.4 340 371 14.6 330 351 13.6 2.9
Prm18 395 422.2 16.2 364 370.7 5.7 323 346 13.7 307 330.7 18 5.0
Prm19 400 428.6 21.9 370 383.2 7.5 380 411.3 20.5 358 387.5 16.4 3.2
Prm20 380 384.7 4.1 335 343.1 7.3 302 317.5 17.4 284 298.5 11.8 6.0
Prm21 548 549.6 2.6 448 465.1 9.8 408 433 20.9 397 421.4 16.1 2.7
Prm22 485 514.1 17.5 407 426.5 12.4 406 444 21.8 392 429.7 22.4 3.4
Prm23 394 443.7 24.4 351 362.9 8.3 378 395.4 10.9 364 386.5 14.9 -3.7
Prm24 534 587.5 27.3 484 500.2 7.4 400 449 21.4 418 459.7 18.2 -4.5
Prm25 482 531.3 31.2 422 448.7 13.7 427 453.2 20.4 416 439.8 14.3 1.4
Prm26 492 529.5 28.6 428 455.1 13.9 429 444.6 12.5 400 428.2 17.4 6.5
Prm27 472 508.1 32 411 435.6 12.5 431 454.2 15.7 365 424.4 23.5 11.2
Prm28 487 518.2 30.7 415 440.3 14.4 364 410 21 378 399.7 15.7 -3.8
Prm29 611 638.1 21.7 554 580.2 13.7 507 537.3 20.5 489 521.8 16.5 3.6
Prm30 573 602.1 11.6 499 526.6 13 483 524.8 20.3 473 522.2 22.6 2.1
Prm31 714 753 32.7 639 669.2 19.2 570 608.7 23.2 572 595.3 12.1 -0.4

<Figure 5> Best Makespan Comparison

The results show that our proposed algorithm (IGA), parti-
cularly inferior selection mechanism, is much better than those 
of HEA and AMSEA. Although direct comparison of compu-
tation time is impossible, the results are satisfactory under 
the given population size of 300 individuals and the termina-
tion condition of 300 generations. 

5. Conclusion 

In this paper, we proposed an improved genetic algorithm 
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for IPPS with tool flexibility and tool related constraints. 
Experiments on the benchmark problems proved that the pro-
posed GA is superior to the existing best algorithm. In a 
practical manufacturing environment, if the subsequent oper-
ation uses another machine, the loading and unloading times 
of the workpiece is essential. Additional setup time should 
also be considered if the orientation of the tool or workpiece 
changes on the same machine. The IPPS in this paper as-
sumed that these times are included in the processing time. 
Future studies will cover more realistic IPPS by considering 
such times. 
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