• Title/Summary/Keyword: Scalar metric

Search Result 93, Processing Time 0.022 seconds

BERGER TYPE DEFORMED SASAKI METRIC ON THE COTANGENT BUNDLE

  • Zagane, Abderrahim
    • Communications of the Korean Mathematical Society
    • /
    • v.36 no.3
    • /
    • pp.575-592
    • /
    • 2021
  • In this paper, we introduce the Berger type deformed Sasaki metric on the cotangent bundle T*M over an anti-paraKähler manifold (M, 𝜑, g) as a new natural metric with respect to g non-rigid on T*M. Firstly, we investigate the Levi-Civita connection of this metric. Secondly, we study the curvature tensor and also we characterize the scalar curvature.

Notes on the Second Tangent Bundle over an Anti-biparaKaehlerian Manifold

  • Nour Elhouda Djaa;Aydin Gezer
    • Kyungpook Mathematical Journal
    • /
    • v.63 no.1
    • /
    • pp.79-95
    • /
    • 2023
  • In this note, we define a Berger type deformed Sasaki metric as a natural metric on the second tangent bundle of a manifold by means of a biparacomplex structure. First, we obtain the Levi-Civita connection of this metric. Secondly, we get the curvature tensor, sectional curvature, and scalar curvature. Afterwards, we obtain some formulas characterizing the geodesics with respect to the metric on the second tangent bundle. Finally, we present the harmonicity conditions for some maps.

THE CHERN SECTIONAL CURVATURE OF A HERMITIAN MANIFOLD

  • Pandeng Cao;Hongjun Li
    • Bulletin of the Korean Mathematical Society
    • /
    • v.61 no.4
    • /
    • pp.897-906
    • /
    • 2024
  • On a Hermitian manifold, the Chern connection can induce a metric connection on the background Riemannian manifold. We call the sectional curvature of the metric connection induced by the Chern connection the Chern sectional curvature of this Hermitian manifold. First, we derive expression of the Chern sectional curvature in local complex coordinates. As an application, we find that a Hermitian metric is Kähler if the Riemann sectional curvature and the Chern sectional curvature coincide. As subsequent results, Ricci curvature and scalar curvature of the metric connection induced by the Chern connection are obtained.

STRUCTURE JACOBI OPERATORS OF SEMI-INVARINAT SUBMANIFOLDS IN A COMPLEX SPACE FORM II

  • Ki, U-Hang;Kim, Soo Jin
    • East Asian mathematical journal
    • /
    • v.38 no.1
    • /
    • pp.43-63
    • /
    • 2022
  • Let M be a semi-invariant submanifold of codimension 3 with almost contact metric structure (φ, ξ, η, g) in a complex space form Mn+1(c). We denote by Rξ the structure Jacobi operator with respect to the structure vector field ξ and by ${\bar{r}}$ the scalar curvature of M. Suppose that Rξ is φ∇ξξ-parallel and at the same time the third fundamental form t satisfies dt(X, Y) = 2θg(φX, Y) for a scalar θ(≠ 2c) and any vector fields X and Y on M. In this paper, we prove that if it satisfies Rξφ = φRξ, then M is a Hopf hypersurface of type (A) in Mn+1(c) provided that ${\bar{r}-2(n-1)c}$ ≤ 0.

BACH ALMOST SOLITONS IN PARASASAKIAN GEOMETRY

  • Uday Chand De;Gopal Ghosh
    • Bulletin of the Korean Mathematical Society
    • /
    • v.60 no.3
    • /
    • pp.763-774
    • /
    • 2023
  • If a paraSasakian manifold of dimension (2n + 1) represents Bach almost solitons, then the Bach tensor is a scalar multiple of the metric tensor and the manifold is of constant scalar curvature. Additionally it is shown that the Ricci operator of the metric g has a constant norm. Next, we characterize 3-dimensional paraSasakian manifolds admitting Bach almost solitons and it is proven that if a 3-dimensional paraSasakian manifold admits Bach almost solitons, then the manifold is of constant scalar curvature. Moreover, in dimension 3 the Bach almost solitons are steady if r = -6; shrinking if r > -6; expanding if r < -6.

ON TWO-DIMENSIONAL LANDSBERG SPACE WITH A SPECIAL (${\alpha},\;{\beta}$)-METRIC

  • Lee, Il-Yong
    • The Pure and Applied Mathematics
    • /
    • v.10 no.4
    • /
    • pp.279-288
    • /
    • 2003
  • In the present paper, we treat a Finsler space with a special (${\alpha},\;{\beta}$)-metric $L({\alpha},\;{\beta})\;\;C_1{\alpha}+C_2{\beta}+{\alpha}^2/{\beta}$ satisfying some conditions. We find a condition that a Finsler space with a special (${\alpha},\;{\beta}$)-metric be a Berwald space. Then it is shown that if a two-dimensional Finsler space with a special (${\alpha},\;{\beta}$)-metric is a Landsberg space, then it is a Berwald space.

  • PDF

CHEN INEQUALITIES ON LIGHTLIKE HYPERSURFACES OF A LORENTZIAN MANIFOLD WITH SEMI-SYMMETRIC NON-METRIC CONNECTION

  • Poyraz, Nergiz (Onen)
    • Honam Mathematical Journal
    • /
    • v.44 no.3
    • /
    • pp.339-359
    • /
    • 2022
  • In this paper, we investigate k-Ricci curvature and k-scalar curvature on lightlike hypersurfaces of a real space form ${\tilde{M}}$(c) of constant sectional curvature c, endowed with semi-symmetric non-metric connection. Using this curvatures, we establish some inequalities for screen homothetic lightlike hypersurface of a real space form ${\tilde{M}}$(c) of constant sectional curvature c, endowed with semi-symmetric non-metric connection. Using these inequalities, we obtain some characterizations for such hypersurfaces. Considering the equality case, we obtain some results.

SYMPLECTICITY OF 4-DIMENSIONAL NIL-MANIFOLDS AND SCALAR CURVATURE

  • Kim, Jong-Su;Yun , Gab-Jin
    • Bulletin of the Korean Mathematical Society
    • /
    • v.35 no.3
    • /
    • pp.563-570
    • /
    • 1998
  • We makes an explicit description of compact 4-dimensional nilmanifolds as principal torus bundles and show that they are sysmplectic. We discuss some consequences of this and give in particular a Seibebrg-Witten-invariant proof of a Grovmov-Lawson theorem that if a compact 4-dimensional nilmanifold admits a metric of zero scalar curvature, then it is diffeomorphic to 4-tours, $T^4$.

  • PDF

CRITICAL POINTS AND WARPED PRODUCT METRICS

  • Hwang, Seung-Su;Chang, Jeong-Wook
    • Bulletin of the Korean Mathematical Society
    • /
    • v.41 no.1
    • /
    • pp.117-123
    • /
    • 2004
  • It has been conjectured that, on a compact orient able manifold M, a critical point of the total scalar curvature functional restricted the space of unit volume metrics of constant scalar curvature is Einstein. In this paper we show that if a manifold is a 3-dimensional warped product, then (M, g) cannot be a critical point unless it is isometric to the standard sphere.