• Title/Summary/Keyword: Sand bottom

Search Result 330, Processing Time 0.022 seconds

An Experimental Study on the Effects of Bottom Ash Compaction Pile in the Sea Clay Layer (해성 점토지반의 저회다짐말뚝 보강 효과에 관한 실험적 연구)

  • Park, Se-Hyun;Han, Yun-Su;Do, Jong-Nam;Chun, Byung-Sik
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.595-598
    • /
    • 2010
  • Many economical and efficient methods such as sand drain method(SD), plastic board drain(PBD), sand compaction pile, vacuum consolidation method, etc., have been used for soft grounds. The case of sand compaction pile has an effect on accelerating consolidation and increasing bearing capacity by penetration at regular intervals under soft grounds for reducing the drainage path. But, this method has caused not only the nature damage by extracting the sands indiscreetly but also the economical problem for importing the sands because it needs so much sand to make the sand compaction pile. Thus, this study choosed the bottom ash which has similar engineering characteristics with sand. It was performed that clogging test and large direct shear test changing the bottom ash replacement ratio in soft ground for studying strength characteristics of soft ground using bottom ash compaction pile. As a result of the test, the internal friction angle was largely increased and the cohesion was decreased as the replacement ratio increased.

  • PDF

An Experimental Study on the Dynamic Behavioral Characteristics of Bottom Ash (석탄회의 동적거동 특성에 대한 실험 연구)

  • Yoon, Won-Sub;Han, Jae-Woon;Shin, Seoung-Gu;Chae, Young-Su
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.1142-1150
    • /
    • 2010
  • An elementary particle of bottom ash is similar to fine sand. So which expected from replace expensive sand. Therefore, this study conducts cyclic triaxial test and a resonant test using relative density, which is obtained from a relative density test of bottom ash and standard sand. Also, it compares antiseismic characteristics of bottom ash and standard sand in order to analyze the possibility of commercial use as a construction material.

  • PDF

Seepage Velocity and Borehole Image of Bottom Protection Layer Filled with Dredged Sand in Sea Dyke (준설해사로 충진된 바닥보호공의 형상 및 침투유속평가)

  • Oh, Young-In;Kang, Byung-Yoon;Kim, Ki-Nyeon;Cho, Young-Gwon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.1727-1734
    • /
    • 2008
  • After the final closure of sea dyke, seepage behaviour of embankment is highly changed by variation of water head different between tide wave and controlled water level at fresh lake. Especially, the seepage behaviour of bottom protection layer of final closure section is more important factor for structural and functional stability of sea dyke, because of the bottom protection layer of final closure section is penetrated sea side to fresh lake. Even though bottom protection layer was filled with dredged fine sand, it has a high permeability. In this paper, mainly described about the seepage velocity and borehole image of bottom protection layer filled with dredged sand after final closure. Various in-situ tests such as BIPS (Borehole Image Processing System) and ABI (Acoustic Borehole Imager) survey, wave velocity measuring, and color tracer survey were conducted to evaluate the seepage behavior of bottom protection layer. Based on the in-situ tests, the bottom protection layer of final closure section was almost filled with dredged sand which is slightly coarse grain sand and there have sea water flow by water head different between tide wave and controlled water level at fresh lake. Also, comply with tracer survey results, the sea water flow path was not exist or generated in the bottom protection layer. However, because of this result not only short term survey but also just one test borehole survey results, additional long term and other borehole tests are needed.

  • PDF

Experimental Study on Physical and Mechanical Properties of Bottom Ash (Bottom Ash의 물리.역학적특성에 대한 실험적 연구)

  • Yoon, Won-Sub;Cho, Chul-Hyun;Park, Sang-Jun;Kim, Jong-Kook;Chae, Young-Soo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.1353-1358
    • /
    • 2008
  • An elementary particle of bottom ash is similar to fine sand. so which expected from replace expensive sand. Especially, If using for improvement of soft ground, It will need of study about strength, permeability and environment of the bottom ash. In this study, the bottom ash operate of physical quality, direct shear test and triaxial compression test so analyze and compare with standard sand.

  • PDF

Recycling of the Bottom Ash, Sourced from the Local MSW (Municipal Solid Waste) Incinerators, as a Fine Sand for Concrete (소각장(燒却場)에서 발생되는 바닥재의 콘크리트용 잔골재(骨材)로서의 재활용(再活用))

  • Lim, Nam-Woong
    • Resources Recycling
    • /
    • v.16 no.2 s.76
    • /
    • pp.40-47
    • /
    • 2007
  • This paper described recycling of the bottom ash, sourced from the local incinerators as a fine sand for concrete. 10% bottom ash was substituted for the ordinary beach sand in the mortar(on a weigh basis), in conjunction with the pozzolznic diatomite. The specimens were tested according to KS L 5105 and analysed by TCLP(Toxic Chemical Leaching Procedure). The results showed that the hazardous heavy metals in the bottom ash are within the maximum permissible limit of TCLP. The compressive strength of the mortar with 10% bottom ash was highly improved, compared to the control mortar when the pozzolanic diatomite was used. It revealed that the hazardous heavy metals of the mortar with 10% bottom ash were leached within the maximum permissible limit of TCLP. It was concluded that the bottom ash can be reused as a fine sand for concrete when the pozzolanic diatomite was used as a stabilizer.

An Experimental Study on the Beach Nourshment Method of HAE UN DAE Beach (해운대 해수욕장에 있어서의 양빈공법에 관한 실험적 연구)

  • 민병형;옥치율;유상호
    • Journal of Ocean Engineering and Technology
    • /
    • v.1 no.1
    • /
    • pp.84-93
    • /
    • 1987
  • A beach nourishment method can be used as one of the beach erosion protection methods which may keep coastal environments whithout constructing coastal structures on the HAE UN DAE beach. The beach nourishmens is affected by a natural condition and artificial condition;a natural condition includes conditions of bottom slope, diameter of bottom materials and waves, and artificial conditions include deposit position, method, diameter and quantity of the nourishing sand. It has accomplished to obtain the deposit position and the best diameter of the nourishing sand from a two-dimensional hydraulic model test, which simulates the erosional HAE UN DAE beach. In this study, the protection of the beach erosion can be maximized when the nourishing sand of 3.3mm in diameter, which is about 5.5.times of the bottom materials in diameter, is deposited layerly in front of the breaker zone which has a water depth of 4.6m.

  • PDF

An Experimental Study on the Beack Nourishment Method of Beach (인공양빈공법에 관한 실험적 연구)

  • 민병형;옥치율;김가현;최도식
    • Journal of Ocean Engineering and Technology
    • /
    • v.2 no.1
    • /
    • pp.163-169
    • /
    • 1988
  • A beach nourishment method can be used as one of the beach. The beach nourishment is affected br a natural condition and an artificial condition; a natural condtion include conditions of bottom slope, diameter of bottom materials and wave, and an artificial condition include deposit position, method, diameter and quantity of the nourishing sand. To obtain and the best diameter of the nourishing sand a two-dimensional hydraulic model test, which simulates the erosional beach, has been accmplished. In this study the protection of the beach erosion can be maximized when the nourishing sand of 0.84mm in diameter, which is about 2.5-3.5 times of the natural bottom materials in diameter.

  • PDF

Removal of Humic Substances on Slow Sand Filtration Amended by GAC (휴믹물질 제거를 위한 완속여과공정에서의 GAC도입)

  • Ahn, Woo-Jung;Nam, Sang-Ho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.2
    • /
    • pp.209-213
    • /
    • 2005
  • Slow sand filtration processes amended with 5 and 10cm GAC layers at top was compared to same process at bottom in a pilot study for humic substances removal. In case of 5cm GAC layer, the process amended at bottom was superior to the process at top in DOC and UV254nm removal and same trends were observed in case of 10cm GAC layer. Head loss developments of the process GAC at bottom were higher than the process GAC at top so that maintenance of the process GAC at top is easier than the process GAC at bottom.

The Effect of Bottom-Hole Stemming Materials on Vibration Level at Urban Area Blasting (시가지 발파에서 공저 전색물이 발파진동에 미치는 영향)

  • 강추원
    • Tunnel and Underground Space
    • /
    • v.7 no.1
    • /
    • pp.51-57
    • /
    • 1997
  • This study provides the results of two different blasting methods applied at the H Telcon construction site in Yeon-dong, Cheju Island. One is the traditional blasting method without bottom-hole stemming and the other with bottom-hole stemming using the materials such as sand, polystyrene and sawdust in 5~10 cm lengths. The effect of these materials on vibration level was studied. Assuming that safety criterion of vibration level be 0.5cm/set, 95% confidence limit line of measured data shows that maximum charge weight per delay could be increased in the following order; traditional methed, polystyrene stemming, sand stemming, sawdust stemming.

  • PDF

Experimental Evaluation of Particulate-matter Filtration Performance of a Bottom Ash-Silica Sand Mixture (석탄 저회-규사 필터의 입자상물질 여과 성능 실험적 평가)

  • Lee, Dong-Hyun;Lee, Hong-Kyoung;Lee, Yun-Jae;An, Jaehun
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.6
    • /
    • pp.41-47
    • /
    • 2022
  • Permeable pavement technology allows the penetration of rainfall into the roadbed, thereby reducing surface runoff and enhancing water quality. The water quality can be improved by adding a filter layer to the permeable pavement. This study analyzes the permeability performance and particulate-matter removal efficiency of a bottom ash-silica sand filter. The performances of five filters with bottom ash and silica sand as the basic materials were evaluated on particulate matter sized 60 ㎛ or smaller. The pure silica sand sample and pure bottom ash sample delivered an average removal efficiency of around 70%. The removal efficiency of the mixed sample was approximately 90%, exceeding the recommended reduction rate (80%) at non-point pollution reduction facilities. In future work, the filter performance should be further verified on permeable pavement.