• Title/Summary/Keyword: SURFACE CRYSTALLIZATION

Search Result 432, Processing Time 0.025 seconds

Mechanical and Electrical Properties of PVA Nanocomposite Containing Sonochemically Modified MWCNT in Water (초음파 수상 그래프팅을 이용하여 개질된 MWCNT가 첨가된 PVA 나노복합체의 전기적, 기계적 물성)

  • Kim, Yeongseon;Kim, Minjae;Choi, Jin Kyu;Shim, Sang Eun
    • Polymer(Korea)
    • /
    • v.39 no.1
    • /
    • pp.136-143
    • /
    • 2015
  • Poly(vinyl alcohol) (PVA) was grafted onto the multiwalled carbon nanotube (MWCNT) using ultrasound in water and modified MWCNT/PVA nanocomposite was prepared. Modified MWCNT had a good affinity with PVA matrix and showed improved dispersion state along with uniform properties. Therefore, the electrical percolation threshold was observed at 0.1 wt% MWCNT. 3.0 wt% modified MWCNT/PVA composite had 50% higher tensile strength, 430% higher elongation at break, and 100% greater modulus. Since the modified MWCNT acted as a nucleation agent, the crystallization temperature increased to $8.5^{\circ}C$ and the crystallinity increased to 11.5% at 5.0 wt% loading concentration.

Quartz Crystal Microbalance Modified by a Novel Vapor Diffused Molecular Assembly Technique and Measurement of Chiral Mandelic Acid (기상확산 자기조립화법에 QCM수식과 Madelic Acid 키랄물질 측정)

  • Kim, JongMin;Kim, SeungJin;Woo, SunYoung;Jang, SukHee;Kim, Woo-Sik;Chang, SangMok
    • Korean Chemical Engineering Research
    • /
    • v.48 no.5
    • /
    • pp.574-582
    • /
    • 2010
  • In this study, the possibility of a quartz crystal micro-balance(QCM) modification of crystallization of L-Penicillamine and D-Penicillamine with a Vapor Diffused Molecular Assembly Technique and its application to the R-(-)-Mandelic acid and S-(+)- Mandelic acid measurement was investigated. The 3-dimensional structures of L-Penicillamine and D-Penicillamine on the surface of QCM were verified to be different from each other through QCM and AFM analyses. The D-Penicillamine modified QCM had specific recognition to the R-(-)-Mandelic acid, but L-Penicillamine modified QCM had no specificity to the R-(-)-Mandelic acid and S-(+)- Mandelic acid. From these results, it was known that the QCM could be modified with various selective meterials via VDMA, and the chiral isomer such as a Mandelic acid isomer could be detected by using a modified QCM.

Fabrication of ZnO incorporated TMA-A zeolite nanocrystals (ZnO를 담지한 TMA-A 제올라이트 나노결정의 제조)

  • Lee, Seok-Ju;Lim, Chang-Sung;Kim, Ik-Jin
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.17 no.6
    • /
    • pp.238-244
    • /
    • 2007
  • Nano-sized ZnO crystals were successfully incorporated using ion exchange method in TMA-A zeolite synthesized by the hydrothermal method. The optimal composition for the synthesis of TMA-A zeolite was resulted in a solution of $Al(i-pro)_3$:2.2 TEOS:2.4 TMAOH:0.3 NaOH:200 $H_2O$. 0.3g of TMA-A zeolite and 5mol of $ZnCl_2$ solution were employed for the preparation of ZnO incorporated TMA-A zeolite. The ZnO incorporated TMA-A zeolite precursors, prepared from the process of mixing, stirring, centrifugal separation and drying, were calcined at temperatures from 400 to $600^{\circ}C$ for 3 h. The crystallization process of ZnO incorporated TMA-A zeolite was analyzed by X-ray diffraction (XRD). The Brunaur-Emett-Teller (BET) surface area of the ZnO incorporated TMA-A zeolite was measured. Subsequently, the morphology and the particle size depending on the temperature and time were observed using scanning electron microscopy(SEM), transmission electron microscopy(TEM) and particle size analyzer.

Production of Fe Amorphous Powders by Gas-atomization Process and Subsequent Spark Plasma Sintering of Fe Amorphous-ductile Cu Composite Powders Produced by Ball-milling Process (I) - I. Gas Atomization and Production of Composite Powders - (가스분무법에 의한 Fe계 비정질 분말의 제조와 볼밀링공정에 의한 연질 Cu 분말과의 복합화 및 SPS 거동 (I) - I. 가스분무 및 복합화 -)

  • Ryu, Ho-Jin;Lim, Jae-Hyun;Kim, Ji-Soon;Kim, Jin-Chun;Kim, H.J.
    • Journal of Powder Materials
    • /
    • v.16 no.5
    • /
    • pp.316-325
    • /
    • 2009
  • Fe based (Fe$_{68.2}$C$_{5.9}$Si$_{3.5}$B$_{6.7}$P$_{9.6}$Cr$_{2.1}$Mo$_{2.0}$Al$_{2.0}$) amorphous powder, which is a composition of iron blast cast slag, were produced by a gas atomization process, and sequently mixed with ductile Cu powder by a mechanical ball milling process. The experiment results show that the as-prepared Fe amorphous powders less than 90 $\mu$m in size has a fully amorphous phase and its weight fraction was about 73.7%. The as-atomized amorphous Fe powders had a complete spherical shape with very clean surface. Differential scanning calorimetric results of the as-atomized Fe powders less than 90 $\mu$m showed that the glass transition, T$_g$, onset crystallization, T$_x$, and super-cooled liquid range $\Delta$T=T$_x$-T$_g$ were 512, 548 and 36$^{\circ}C$, respectively. Fe amorphous powders were mixed and deformed well with 10 wt.% Cu by using AGO-2 high energy ball mill under 500 rpm.

The Effects of Various Alkali Cations on the Crystallization of ZSM-5 at Atmospheric Pressure and Low Temperature (저온상압하에서의 ZSM-5 결정화 반응에 대한 알칼리 양이온의 영향)

  • Kim, Wha Jung;Lee, Myung Churl
    • Applied Chemistry for Engineering
    • /
    • v.9 no.1
    • /
    • pp.38-43
    • /
    • 1998
  • It was realized that the nucleation rate in the synthesis of M-ZSM-5 using various alkali cations such as $Li^+$, $Na^+$, $K^+$ and $Cs^+$ at low temperature and atmospheric pressure was decreased in the order of $Na^+>K^+>Li^+>Cs^+$. Unlike conventional synthesis method at high temperature and pressure, the results showed that at low temperature and atmospheric pressure, the higher the nucleation rate is, the larger the crystal size of M-ZSM-5 obtained ; that is, the crystal size in the order of $K^+>Na^+>Cs^+>Li^+$. In addition, it also suggests that regardless of alkali cations to be used, the current synthesis method can produce M-ZSM-5 with BET surface area greater than $300m^2/g$ within 52hrs. of reaction time, in particular greater than $400m^2/g$ within 32hrs, for $Na^+$ cation.

  • PDF

Effects of Polymerization and Spinning Conditions on Mechanical Properties of PAN Precursor Fibers

  • Qin, Qi-Feng;Dai, Yong-Qiang;Yi, Kai;Zhang, Li;Ryu, Seung-Kon;Jin, Ri-Guang
    • Carbon letters
    • /
    • v.11 no.3
    • /
    • pp.176-183
    • /
    • 2010
  • PAN precursor fibers were produced via wet-spinning process, and effects of polymerization and spinning processes, especially the stretching process, were investigated on mechanical properties and micro-morphologies of precursor fibers. An increase in molecular weight, dope solid and densification and a decrease in surface defects were possible by controlling polymerization temperature, the number of heating rollers for densification and the jet stretch ratio, which improved the mechanical properties of precursor fibers. The curves for strength, modulus, tensile power and diameter as a function of stretch ratio can be divided into three stages: steady change area, little change area and sudden change area. With the increase of stretch ratio, the fiber diameter became smaller, the degree of crystallization increased and the structure of precursor fibers became compact and homogeneous, which resulted in the increase of strength, modulus and tensile power of precursor fibers. Empirical relationship between fiber strength and stretch ratio was studied by using the sub-cluster statistical theory. It was successfully predicted when the strengths were 0.8 GPa and 1.0 GPa under a certain technical condition, the corresponding stretch ratio of the fiber were 11.16 and 12.83 respectively.

Pretreatment of Livestock Wastewater containing PO4-3-P with Waste Oyster Shells (폐굴껍질을 이용한 축산폐수중 무기인의 1차 처리)

  • Kim, Eun-Ho;Kim, Seok-Tack;Jang, Sung-Ho
    • Korean Journal of Environmental Agriculture
    • /
    • v.18 no.1
    • /
    • pp.48-53
    • /
    • 1999
  • In this study, various batch tests were performed to examine the utilization of waste oyster shells for removal of $PO_4^{3-}-P$ in livestock wastewater, because waste oyster shells have been known to be very porous and to have alkaline minerals such as calcium and mangnesium. $PO_4^{3-}-P$ removal rate were increased by waste oyster shells, as specific surface area and contact efficiency per unit area of their were increased. Generally, it could be showed that $PO_4^{3-}-P$ removal rate were very influenced by particle size, dosage and temperature. At low pH of initial reactions, it would be showed that $PO_4^{3-}-P$ removals were directly influenced by adsorption but crystallization process were dominated with passed time and pH increasing. The SEM observed that the variations were hardly seen, but particle sizes of waste oyster shell were relatively big after reactions and showed forms of smaller plate than before reactions.

  • PDF

Structural Properties of Nickel Manganite Thin Films Fabricated by Metal Organic Decomposition (금속유기분해법으로 제조한 니켈 망가나이트 박막의 구조적 특성)

  • Lee, Kui Woong;Jeon, Chang Jun;Jeong, Young Hun;Yun, Ji Sun;Nam, Joong Hee;Cho, Jeong Ho;Paik, Jong Hoo;Yoon, Jong-Won
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.4
    • /
    • pp.226-231
    • /
    • 2014
  • Thin thermistor films of solutions with nickel and manganese oxides were prepared by metal-organic decomposition (MOD). The structural properties of the thin films were investigated as a function of annealing temperature. Field emission scanning electron microscope (FE-SEM) results indicated that the thin films had a thin thickness, smooth and dense surface. The crystallization temperature of $414.9^{\circ}C$ was confirmed from thermogavimetric-differential thermal analysis (TG-DTA) curve. A single phase of cubic spinel structure was obtained for the thin film annealed from $700^{\circ}C$ to $800^{\circ}C$, which was confirmed from the X-ray diffraction (XRD). From the selected area electron diffraction (SAED) in high resolution transmission electron microscope (HRTEM), the nano grains (2~3 nm) of spinel phase with (311) and (222) planes were detected for the thin film annealed at $500^{\circ}C$, which could be applicable to read-out integrated circuit (ROIC) substrate of the uncooled microbolometer with low processing temperature.

Weathering Characteristics and Condition Assessment Conservation Treatment for Bayon Style Avalokitesvara, Cambodia (캄보디아 바이욘 양식 관음보살상의 풍화특성과 보존처리 상태평가)

  • Choie, Myoungju;Lee, Myeong Seong;Yoo, Ji Hyun;Chun, Yu Gun;Kim, Sothin;In, Sovann;Oum, Sineth
    • Journal of Conservation Science
    • /
    • v.34 no.3
    • /
    • pp.167-177
    • /
    • 2018
  • The Bayon style Avalokitesvara statue from the $13^{th}$ century Angkor period is on display at the Cambodia Angkor Conservation Office. This statue is composed of dark green felthspathic greywacke, the surface of which has been shown light brown discoloration, detected calcite crystallization. As a result of condition assessment, the statue was damaged due to overlap scaling and cracking. Ultrasonic tests have investigated remarkable physical weathering area, flaking and fragmentation in lower velocity. The physical condition of the statue requires a conservation method that improves the binding power. To protect against salt weathering and to ensure physical stability, new conservation material composed of mixed ethyl silicate and sandstone powder similar to that composing the statue was created. The material affected by damage was removed and replaced with the new conservation material.

Photocatalytic Efficiency and Bandgap Property of the CdS Deposited TiO2 Photocatalysts (TiO2/CdS 복합광촉매의 밴드갭 에너지 특성과 광촉매 효율)

  • Lee, Jong-Ho;Heo, Sujeong;Youn, Jeong-Il;Kim, Young-Jig;Suh, Su-Jeong;Oh, Han-Jun
    • Korean Journal of Materials Research
    • /
    • v.29 no.12
    • /
    • pp.790-797
    • /
    • 2019
  • To improve photocatalytic performance, CdS nanoparticle deposited TiO2 nanotubular photocatalysts are synthesized. The TiO2 nanotube is fabricated by electrochemical anodization at a constant voltage of 60 V, and annealed at 500 for crystallization. The CdS nanoparticles on TiO2 nanotubes are synthesized by successive ionic layer adsorption and reaction method. The surface characteristics and photocurrent responses of TNT/CdS photocatalysts are investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD), UV-Vis spectrometer and LED light source installed potentiostat. The bandgaps of the CdS deposited TiO2 photocatalysts are gradually narrowed with increasing of amounts of deposited CdS nanoparticles, which enhances visible light absorption ability of composite photocatalysts. Enhanced photoelectrochemical performance is observed in the nanocomposite TiO2 photocatalyst. However, the maximum photocurrent response and dye degradation efficiency are observed for TNT/CdS30 photocatalyst. The excellent photocatalytic performance of TNT/CdS30 catalyst can be ascribed to the synergistic effects of its better absorption ability of visible light region and efficient charge transport process.