DOI QR코드

DOI QR Code

Production of Fe Amorphous Powders by Gas-atomization Process and Subsequent Spark Plasma Sintering of Fe Amorphous-ductile Cu Composite Powders Produced by Ball-milling Process (I) - I. Gas Atomization and Production of Composite Powders -

가스분무법에 의한 Fe계 비정질 분말의 제조와 볼밀링공정에 의한 연질 Cu 분말과의 복합화 및 SPS 거동 (I) - I. 가스분무 및 복합화 -

  • Ryu, Ho-Jin (School of Materials Science & Engineering, University of Ulsan) ;
  • Lim, Jae-Hyun (School of Materials Science & Engineering, University of Ulsan) ;
  • Kim, Ji-Soon (School of Materials Science & Engineering, University of Ulsan) ;
  • Kim, Jin-Chun (School of Materials Science & Engineering, University of Ulsan) ;
  • Kim, H.J. (Eco Functional Materials Team, Korea Institute of Industrial Technology)
  • 류호진 (울산대학교 첨단소재공학부) ;
  • 임재현 (울산대학교 첨단소재공학부) ;
  • 김지순 (울산대학교 첨단소재공학부) ;
  • 김진천 (울산대학교 첨단소재공학부) ;
  • 김휘준 (한국생산기술연구원 에코공정연구부)
  • Published : 2009.10.28

Abstract

Fe based (Fe$_{68.2}$C$_{5.9}$Si$_{3.5}$B$_{6.7}$P$_{9.6}$Cr$_{2.1}$Mo$_{2.0}$Al$_{2.0}$) amorphous powder, which is a composition of iron blast cast slag, were produced by a gas atomization process, and sequently mixed with ductile Cu powder by a mechanical ball milling process. The experiment results show that the as-prepared Fe amorphous powders less than 90 $\mu$m in size has a fully amorphous phase and its weight fraction was about 73.7%. The as-atomized amorphous Fe powders had a complete spherical shape with very clean surface. Differential scanning calorimetric results of the as-atomized Fe powders less than 90 $\mu$m showed that the glass transition, T$_g$, onset crystallization, T$_x$, and super-cooled liquid range $\Delta$T=T$_x$-T$_g$ were 512, 548 and 36$^{\circ}C$, respectively. Fe amorphous powders were mixed and deformed well with 10 wt.% Cu by using AGO-2 high energy ball mill under 500 rpm.

Keywords

References

  1. A. Inoue: Acta Mater., 48 (2000) 279. https://doi.org/10.1016/S1359-6454(99)00300-6
  2. T. Masumoto: Materials Science of Amorphous Metals, Ohmu, Tokyo, (1982).
  3. M. Hagiwara, A. Inoue and T. Masumoto: Metal Trans. A, 13 (1982) 373. https://doi.org/10.1007/BF02643346
  4. H. Fu, H. Zhang, H. Wang, Q. Zhang and Z. Hu: Scripta Mater., 52 (2005) 669. https://doi.org/10.1016/j.scriptamat.2004.10.031
  5. C. C. Hays, C. P. Kim and W. L. Johnson: Mater. Sci. Eng. A, 304-306 (2001) 650. https://doi.org/10.1016/S0921-5093(00)01557-4
  6. Y. J. Kim, B. K. Kim and J. C. Kim: Mater. Sci. Eng. A, 449 (2007) 1071. https://doi.org/10.1016/j.msea.2006.02.314
  7. J. C. Kim, Y. J. Kim. B. K. Kim, J. S. Kim: J. Korean Powder Metall. Inst., 13 (2006) 351. https://doi.org/10.4150/KPMI.2006.13.5.351
  8. J. S. Benjamain: Metall. Trans., 1 (1970) 2943. https://doi.org/10.1016/S1672-2515(07)60136-5
  9. J. S. Benjamain and R. C. Benn, editors.: Frontiers of high-temperature materials II. New York, INCO Alloys International, (1983).
  10. J. S. Benjamain and T. E Vollin: Metall. Trans., 5 (1974) 1929. https://doi.org/10.1007/BF02644161
  11. C. C. Koch, O. B. Cavin, C. G. McMamey and J. O. Scarbrough: Appl. Phys. Lett., 43 (1983) 1017. https://doi.org/10.1063/1.94213
  12. J. C. Kim, H. J. Ryu, J. S. Kim, J. C. Kim and H. J. Kim: J. Korean Powder Metall. Inst., in press (2009) (Korean).
  13. H. Li and S. H. Lee: Mater. Sci. Eng. A, 449-451 (2007) 189. https://doi.org/10.1016/j.msea.2006.02.262