Browse > Article
http://dx.doi.org/10.4150/KPMI.2009.16.5.316

Production of Fe Amorphous Powders by Gas-atomization Process and Subsequent Spark Plasma Sintering of Fe Amorphous-ductile Cu Composite Powders Produced by Ball-milling Process (I) - I. Gas Atomization and Production of Composite Powders -  

Ryu, Ho-Jin (School of Materials Science & Engineering, University of Ulsan)
Lim, Jae-Hyun (School of Materials Science & Engineering, University of Ulsan)
Kim, Ji-Soon (School of Materials Science & Engineering, University of Ulsan)
Kim, Jin-Chun (School of Materials Science & Engineering, University of Ulsan)
Kim, H.J. (Eco Functional Materials Team, Korea Institute of Industrial Technology)
Publication Information
Journal of Powder Materials / v.16, no.5, 2009 , pp. 316-325 More about this Journal
Abstract
Fe based (Fe$_{68.2}$C$_{5.9}$Si$_{3.5}$B$_{6.7}$P$_{9.6}$Cr$_{2.1}$Mo$_{2.0}$Al$_{2.0}$) amorphous powder, which is a composition of iron blast cast slag, were produced by a gas atomization process, and sequently mixed with ductile Cu powder by a mechanical ball milling process. The experiment results show that the as-prepared Fe amorphous powders less than 90 $\mu$m in size has a fully amorphous phase and its weight fraction was about 73.7%. The as-atomized amorphous Fe powders had a complete spherical shape with very clean surface. Differential scanning calorimetric results of the as-atomized Fe powders less than 90 $\mu$m showed that the glass transition, T$_g$, onset crystallization, T$_x$, and super-cooled liquid range $\Delta$T=T$_x$-T$_g$ were 512, 548 and 36$^{\circ}C$, respectively. Fe amorphous powders were mixed and deformed well with 10 wt.% Cu by using AGO-2 high energy ball mill under 500 rpm.
Keywords
Amorphous powders; Gas atomization; Ball milling process; Composite powders;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 J. S. Benjamain: Metall. Trans., 1 (1970) 2943.   DOI   ScienceOn
2 J. S. Benjamain and R. C. Benn, editors.: Frontiers of high-temperature materials II. New York, INCO Alloys International, (1983).
3 J. C. Kim, Y. J. Kim. B. K. Kim, J. S. Kim: J. Korean Powder Metall. Inst., 13 (2006) 351.   과학기술학회마을   DOI   ScienceOn
4 A. Inoue: Acta Mater., 48 (2000) 279.   DOI   ScienceOn
5 T. Masumoto: Materials Science of Amorphous Metals, Ohmu, Tokyo, (1982).
6 M. Hagiwara, A. Inoue and T. Masumoto: Metal Trans. A, 13 (1982) 373.   DOI
7 H. Fu, H. Zhang, H. Wang, Q. Zhang and Z. Hu: Scripta Mater., 52 (2005) 669.   DOI   ScienceOn
8 C. C. Hays, C. P. Kim and W. L. Johnson: Mater. Sci. Eng. A, 304-306 (2001) 650.   DOI   ScienceOn
9 Y. J. Kim, B. K. Kim and J. C. Kim: Mater. Sci. Eng. A, 449 (2007) 1071.   DOI   ScienceOn
10 C. C. Koch, O. B. Cavin, C. G. McMamey and J. O. Scarbrough: Appl. Phys. Lett., 43 (1983) 1017.   DOI
11 J. C. Kim, H. J. Ryu, J. S. Kim, J. C. Kim and H. J. Kim: J. Korean Powder Metall. Inst., in press (2009) (Korean).
12 J. S. Benjamain and T. E Vollin: Metall. Trans., 5 (1974) 1929.   DOI
13 H. Li and S. H. Lee: Mater. Sci. Eng. A, 449-451 (2007) 189.   DOI   ScienceOn