Browse > Article
http://dx.doi.org/10.3740/MRSK.2019.29.12.790

Photocatalytic Efficiency and Bandgap Property of the CdS Deposited TiO2 Photocatalysts  

Lee, Jong-Ho (Department of Chemistry, Hanseo University)
Heo, Sujeong (Department of Chemistry, Hanseo University)
Youn, Jeong-Il (School of Advanced Materials Engineering, Sungkyunkwan University)
Kim, Young-Jig (School of Advanced Materials Engineering, Sungkyunkwan University)
Suh, Su-Jeong (School of Advanced Materials Engineering, Sungkyunkwan University)
Oh, Han-Jun (Department of Materials Science, Hanseo University)
Publication Information
Korean Journal of Materials Research / v.29, no.12, 2019 , pp. 790-797 More about this Journal
Abstract
To improve photocatalytic performance, CdS nanoparticle deposited TiO2 nanotubular photocatalysts are synthesized. The TiO2 nanotube is fabricated by electrochemical anodization at a constant voltage of 60 V, and annealed at 500 for crystallization. The CdS nanoparticles on TiO2 nanotubes are synthesized by successive ionic layer adsorption and reaction method. The surface characteristics and photocurrent responses of TNT/CdS photocatalysts are investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD), UV-Vis spectrometer and LED light source installed potentiostat. The bandgaps of the CdS deposited TiO2 photocatalysts are gradually narrowed with increasing of amounts of deposited CdS nanoparticles, which enhances visible light absorption ability of composite photocatalysts. Enhanced photoelectrochemical performance is observed in the nanocomposite TiO2 photocatalyst. However, the maximum photocurrent response and dye degradation efficiency are observed for TNT/CdS30 photocatalyst. The excellent photocatalytic performance of TNT/CdS30 catalyst can be ascribed to the synergistic effects of its better absorption ability of visible light region and efficient charge transport process.
Keywords
$TiO_2$ nanotube; successive ionic layer adsorption and reaction (SILAR) method; CdS deposition; Tauc plot; dye degradation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 K. Xie, Z. Wu, M. Wang, J. Yu, C. Gong, L. Sun and C. Lin, Electrochem. Commun., 63, 56 (2016).   DOI
2 X. Li, X. Chen, H. Niu, X. Han, T. Zhang, J. Liu, H. Lin and F. Qu, J. Colloid Interface Sci., 452, 89 (2015).   DOI
3 L. Yu, D. Wang and D. Ye, Sep. Purif. Technol., 156, 708 (2015).   DOI
4 P. Yilmaz, A.M. Lacerda, I. Larrosa and S. Dunn, Electrochim. Acta, 231, 641 (2017).   DOI
5 H. Li, Z. Xia, J. Chen, L. Lei and J. Xing, Appl. Catal., B, 168-169, 105 (2015).   DOI
6 B. Tan and Y. Wu, J. Phys. Chem. B, 110, 15932 (2006).   DOI
7 M. Wang, Z. Cui, M. Yang, L. Lin, X. Chen, M. Wang and J. Han, J. Colloid Interface Sci., 544, 1 (2019).   DOI
8 S.-Y. Li, Z.-L. Liu, G.-X. Xiang, B.-H. Ma, X.-D. Meng and Y.-L. He, Ceram. Int., 45, 767 (2019).   DOI
9 A. Monamary and K. Vijayalakshmi, Ceram. Int., 44, 22957 (2018).   DOI
10 J. -H. Lee, J. -I.Youn, Y. -J. Kim, I. -K. Kim, K. -W. Jang and H. -J. Oh, Ceram. Int., 41, 11899 (2015).   DOI
11 B. Zielinska and A. W. Morawski, Appl. Catal., B, 55, 221 (2005).   DOI
12 S. N. Hosseini, S. M. Borghei, M. Vossoughi and N. Taghavinia, Appl. Catal., B, 74, 53 (2007).   DOI
13 F. Tian, D. Hou, F. Hu, K. Xie, X. Qiao and D. Li, Appl. Surf. Sci., 391, 295 (2017).   DOI