DOI QR코드

DOI QR Code

Mechanical and Electrical Properties of PVA Nanocomposite Containing Sonochemically Modified MWCNT in Water

초음파 수상 그래프팅을 이용하여 개질된 MWCNT가 첨가된 PVA 나노복합체의 전기적, 기계적 물성

  • Kim, Yeongseon (Department of Chemistry & Chemical Engineering, Inha University) ;
  • Kim, Minjae (Department of Chemistry & Chemical Engineering, Inha University) ;
  • Choi, Jin Kyu (Department of Chemistry & Chemical Engineering, Inha University) ;
  • Shim, Sang Eun (Department of Chemistry & Chemical Engineering, Inha University)
  • Received : 2014.06.26
  • Accepted : 2014.07.25
  • Published : 2015.01.25

Abstract

Poly(vinyl alcohol) (PVA) was grafted onto the multiwalled carbon nanotube (MWCNT) using ultrasound in water and modified MWCNT/PVA nanocomposite was prepared. Modified MWCNT had a good affinity with PVA matrix and showed improved dispersion state along with uniform properties. Therefore, the electrical percolation threshold was observed at 0.1 wt% MWCNT. 3.0 wt% modified MWCNT/PVA composite had 50% higher tensile strength, 430% higher elongation at break, and 100% greater modulus. Since the modified MWCNT acted as a nucleation agent, the crystallization temperature increased to $8.5^{\circ}C$ and the crystallinity increased to 11.5% at 5.0 wt% loading concentration.

초음파를 이용하여 poly(vinyl alcohol)(PVA)를 multiwalled carbon nanotube(MWCNT) 표면에 수상 그래프팅하였고, 개질된 MWCNT를 이용하여 PVA와 나노복합체를 제조하였다. PVA로 개질된 MWCNT는 PVA 매트리스에 높은 친화성을 띠고, 우수한 분산성을 가지며, 그 복합체는 균일한 물성을 가지고 있었다. 이로 인하여 0.1 wt% 함량의 MWCNT 첨가시에 전기전도도의 percolation threshold이 관찰되었다. 개질한 MWCNT를 3.0 wt%로 사용한 복합체는 순수 PVA 대비 인장강도는 약 50%, 파단 연신율은 약 430%, 모듈러스는 약 100% 증가하였다. 또한 개질된 MWCNT는 PVA 매트리스에 핵제로 작용하여 5.0 wt% 첨가 시, 결정화온도를 $8.5^{\circ}C$ 증가시키고 결정화도는 11.5% 증가하였다.

Keywords

Acknowledgement

Supported by : 한국연구재단

References

  1. O. Breuer and U. Sundararaj, Polym. Compos., 25, 630 (2004). https://doi.org/10.1002/pc.20058
  2. J. Choi, E. J. Park, D. W. Park, and S. E. Shim, Synth. Met., 160, 2664 (2010). https://doi.org/10.1016/j.synthmet.2010.10.022
  3. W. A. de Heer, A. Chatelain, and D. Ugarte, Science, 270, 1179 (1995). https://doi.org/10.1126/science.270.5239.1179
  4. Q. Chen, L. Dai, M. Gao, S. Huang, and A. Mau, J. Phys. Chem. B, 105, 618 (2001). https://doi.org/10.1021/jp003385g
  5. C. Park, Z. Qunaies, K. A. Watson, R. E. Crooks, J. Smith, S. E. Lowther, J. W. Conneli, E. J. Siochi, J. S. Harrison, and T. L. S. Clair, Chem. Phys. Lett., 364, 303 (2002). https://doi.org/10.1016/S0009-2614(02)01326-X
  6. W. Ma, L. Liu, Z. Zhang, R. Yang, G. Liu, T. Zhang, X. An, X. Yi, Y. Ren, Z. Niu, J. Li, H. Dong, W. Zhou, P. M. Ajayan, and S. Xie, Compos. Sci. Technol., 66, 1162 (2006). https://doi.org/10.1016/j.compscitech.2005.10.004
  7. P. M. Ajayan and J. M. Tour, Nature, 447, 1066 (2007). https://doi.org/10.1038/4471066a
  8. G. Chakraborty, A. K. Meikap, R. Babu, and W. J. Blau, Solid State Commun., 151, 754 (2011). https://doi.org/10.1016/j.ssc.2011.03.013
  9. E. V. Basiuk, A. Anis, S. Bandyopadhyay, E. Alvarez-Zauco, S. L. I. Chan, and V. A. Basiuk, Superlattice Microst., 46, 379 (2009). https://doi.org/10.1016/j.spmi.2008.10.007
  10. M. Naebe, T. Lin, M. P. Straiger, L. Dai, and X. Wang, Nanotechnology, 19, 305 (2008).
  11. L. Liu, A. H. Barber, S. Nuriel, and H. D. Wagner, Adv. Funct. Mater., 15, 975 (2005). https://doi.org/10.1002/adfm.200400525
  12. M. C. Paiva, B. Zhou, K. A. S. Fernando, Y. Lin, J. M. Kennedy, and Y. P. Sun, Carbon, 42, 2849 (2004). https://doi.org/10.1016/j.carbon.2004.06.031
  13. Y. Mi, X. Zhanga, S. Zhou, J. Cheng, F. Liua, H. Zhua, X. Dong, and Z. Jiao, Compos. Part A-Appl. Sci. Manuf., 38, 2041 (2007). https://doi.org/10.1016/j.compositesa.2007.04.014
  14. J. B. Bai and A. Allaoui, Compos. Part A-Appl. Sci. Manuf., 34, 689 (2003). https://doi.org/10.1016/S1359-835X(03)00140-4
  15. H. Cebeci, R. G. D. Villoria, A. J. Hart, and B. L. Wardle, Compos. Sci. Technol., 69, 2649 (2009). https://doi.org/10.1016/j.compscitech.2009.08.006
  16. G. Gorrasi, R. D. Lieto, G. Patimo, S. D. Pasquale, and A. Sorrentino, Polymer, 52, 1124 (2001).
  17. A. I. Oliva-Aviles, F. Aviles, and V. Sosa, Carbon, 49, 2989 (2011). https://doi.org/10.1016/j.carbon.2011.03.017
  18. M. Moniruzzaman and K. I. Winey, Macromolecules, 39, 5194 (2006). https://doi.org/10.1021/ma060733p
  19. X. Zhang, Z. Lu, M. Wen, H. Liang, J. Zhang, and Z. Liu, J. Phys. Chem. B, 109, 1101 (2005). https://doi.org/10.1021/jp045934e
  20. Y. Kim and S. E. Shim, Polymer(Korea), 38, 378 (2014).
  21. M. Cadek, J. N. Coleman, V. Barron, K. Hedicke, and W. J. Blau, Appl. Phys. Lett., 81, 5123 (2002). https://doi.org/10.1063/1.1533118
  22. J. N. Coleman, M. Cadek, R. Blake, V. Nicolosi, K. P. Ryan, C. Belton, A. Fonseca, J. B. Nagy, Y. K. Gun'ko, and W. J. Blau, Adv. Func. Mater., 14, 791 (2004). https://doi.org/10.1002/adfm.200305200
  23. W. Chen, X. Tao, P. Xue, and X. Cheng, Appl. Surf. Sci., 252, 1404 (2005). https://doi.org/10.1016/j.apsusc.2005.02.138
  24. K. P. Ryan, M. Cadek, V. Nicolosi, S. Walker, M. Ruether, A. Fonseca, J. B. Nagy, W. J. Blau, and J. N. Coleman, Synth. Met., 156, 332 (2006). https://doi.org/10.1016/j.synthmet.2005.12.015
  25. C. Bartholome, P. Miaudet, A. Derre, M. Maugey, O. Roubeau, C. Zakri, and P. Poulin, Compos. Sci. Technol., 68, 2568 (2008). https://doi.org/10.1016/j.compscitech.2008.05.021

Cited by

  1. Flexible free-standing composite films having 3D continuous structures of hollow graphene ellipsoids vol.23, pp.6, 2015, https://doi.org/10.1007/s13233-015-3072-7
  2. Mechanical and Electrical Properties of Multiwalled Carbon Nanotube Nanocomposites with Different Resin Matrices vol.24, pp.2, 2021, https://doi.org/10.1134/s1029959921020120