• Title/Summary/Keyword: STI isolation

Search Result 84, Processing Time 0.025 seconds

A study on the Dislocation-Free Shallow Trench Isolation (STI) Process (Dislocation-Free Shallow Trench Isolation 공정 연구)

  • Yoo, Hae-Young;Kim, Nam-Hoon;Kim, Sang-Yong;Lee, Woo-Sun;Chang, Eui-Goo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.84-85
    • /
    • 2005
  • Dislocations are often found at Shallow Trench Isolation (STI) process after repeated thermal cycles. The residual stress after STI process often leads defect like dislocation by post STI thermo-mechanical stress. Thermo-mechanical stress induced by STI process is difficult to remove perfectly by plastic deformation at previous thermal cycles. Embedded flash memory process is very weak in terms of post STI thermo-mechanical stress, because it requires more oxidation steps than other devices. Therefore, dislocation-free flash process should be optimized.

  • PDF

A Study on the Nitride Residue and Pad Oxide Damage of Shallow Trench Isolation(STI)-Chemical Mechanical Polishing(CMP) Process (STI-CMP 공정의 질화막 잔존물 및 패드 산화막 손상에 대한 연구)

  • Lee, U-Seon;Seo, Yong-Jin;Kim, Sang-Yong;Jang, Ui-Gu
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.50 no.9
    • /
    • pp.438-443
    • /
    • 2001
  • In the shallow trench isolation(STI)-chemical mechanical polishing(CMP) process, the key issues are the optimized thickness control, within-wafer-non-uniformity, and the possible defects such as pad oxide damage and nitride residue. The defect like nitride residue and silicon (or pad oxide) damage after STI-CMP process were discussed to accomplish its optimum process condition. To understand its optimum process condition, overall STI related processes including reverse moat etch, trench etch, STI fill and STI-CMP were discussed. Consequently, we could conclude that law trench depth and high CMP thickness can cause nitride residue, and high trench depth and over-polishing can cause silicon damage.

  • PDF

Reproducible Chemical Mechanical Polishing Characteristics of Shallow Trench Isolation Structure using High Selectivity Slurry

  • Jeong, So-Young;Seo, Yong-Jin;Kim, Sang-Yong
    • Transactions on Electrical and Electronic Materials
    • /
    • v.3 no.4
    • /
    • pp.5-9
    • /
    • 2002
  • Chemical mechanical polishing (CMP) has become the preferred planarization method for multilevel interconnect technology due to its ability to achieve a high degree of feature level planarity. Especially, to achieve the higher density and greater performance, shallow trench isolation (STI)-CMP process has been attracted attention for multilevel interconnection as an essential isolation technology. Also, it was possible to apply the direct STI-CMP process without reverse moat etch step using high selectivity slurry (HSS). In this work, we determined the process margin with optimized process conditions to apply HSS STI-CMP process. Then, we evaluated the reliability and reproducibility of STI-CMP process through the optimal process conditions. The wafer-to-wafer thickness variation and day-by-day reproducibility of STI-CMP process after repeatable tests were investigated. Our experimental results show, quite acceptable and reproducible CMP results with a wafer-to-wafer thickness variation within 400$\AA$.

A Study of Chemical Mechanical Polishing on Shallow Trench Isolation to Reduce Defect (CMP 연마를 통한 STI에서 결함 감소)

  • 백명기;김상용;김창일;장의구
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.501-504
    • /
    • 1999
  • In the shallow trench isolation(STI) chemical mechanical polishing(CMP) process, the key issues are the optimized thickness control within- wafer-non-uniformity, and the possible defects such as nitride residue and pad oxide damage. These defects after STI CMP process were discussed to accomplish its optimum process condition. To understand its optimum process condition, overall STI related processes including reverse moat etch, trench etch, STI filling and STI CMP were discussed. It is represented that the nitride residue can be occurred in the condition of high post CMP thickness and low trench depth. In addition there are remaining oxide on the moat surface after reverse moat etch. It means that reverse moat etching process can be the main source of nitride residue. Pad oxide damage can be caused by over-polishing and high trench depth.

  • PDF

Characteristics of Transistors and Isolation as Trench Depth (트렌치 깊이에 따른 트랜지스터와 소자분리 특성)

  • 박상원;김선순;최준기;이상희;김용해;장성근;한대희;김형덕
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.911-913
    • /
    • 1999
  • Shallow Trench Isolation (STI) has become the most promising isolation scheme for ULSI applications. The stress of STI structure is one of several factors to degrade characteristics of a device. The stress contours or STI structure vary with the trench depth. Isolation characteristics of STI was analyzed as the depth of trench varied. And transistor characteristics was compared. Isolation punch-through voltage for n$^{+}$ to pwell and p$^{+}$ to nwell increased as trench depth increased. n$^{+}$ to pwell leakage current had nothing to do with trench depth but n$^{+}$ to pwell leakage current decreased as trench depth increased. In the case of transistor characteristics, short channel effect was independent on trench depth and inverse narrow width effect was greater for deeper trenches. Therefore in order to achieve stable device, it is important to minimize stress by optimizing trench depth.

  • PDF

Chemical Mechanical Polishing Characteristics with Different Slurry and Pad (슬러리 및 패드 변화에 따른 기계화학적인 연마 특성)

  • 서용진;정소영;김상용
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.10
    • /
    • pp.441-446
    • /
    • 2003
  • The chemical mechanical polishing (CMP) process is now widely employed in the ultra large scale integrated (ULSI) semiconductor fabrication. Especially, shallow trench isolation (STI) has become a key isolation scheme for sub-0.13/0.10${\mu}{\textrm}{m}$ CMOS technology. The most important issues of STI-CMP is to decrease the various defects such as nitride residue, dishing, and tom oxide. To solve these problems, in this paper, we studied the planarization characteristics using slurry additive with the high selectivity between $SiO_2$ and $Si_3$$N_4$ films for the purpose of process simplification and in-situ end point detection. As our experimental results, it was possible to achieve a global planarization and STI-CMP process could be dramatically simplified. Also, we estimated the reliability through the repeated tests with the optimized process conditions in order to identify the reproducibility of STI-CMP process.

A Study on the Electrical Characteristics of Ultra Thin Gate Oxide

  • Eom, Gum-Yong
    • Transactions on Electrical and Electronic Materials
    • /
    • v.5 no.5
    • /
    • pp.169-172
    • /
    • 2004
  • Deep sub-micron device required to get the superior ultra thin gate oxide characteristics. In this research, I will recommend a novel shallow trench isolation structure(STI) for thin gate oxide and a $N_2$O gate oxide 30 $\AA$ by NO ambient process. The local oxidation of silicon(LOCOS) isolation has been replaced by the shallow trench isolation which has less encroachment into the active device area. Also for $N_2$O gate oxide 30 $\AA$, ultra thin gate oxide 30 $\AA$ was formed by using the $N_2$O gate oxide formation method on STI structure and LOCOS structure. For the metal electrode and junction, TiSi$_2$ process was performed by RTP annealing at 850 $^{\circ}C$ for 29 sec. In the viewpoints of the physical characteristics of MOS capacitor, STI structure was confirmed by SEM. STI structure was expected to minimize the oxide loss at the channel edge. Also, STI structure is considered to decrease the threshold voltage, result in a lower Ti/TiN resistance( Ω /cont.) and higher capacitance-gate voltage(C- V) that made the STI structure more effective. In terms of the TDDB(sec) characteristics, the STI structure showed the stable value of 25 % ~ 90 % more than 55 sec. In brief, analysis of the ultra thin gate oxide 30 $\AA$ proved that STI isolation structure and salicidation process presented in this study. I could achieve improved electrical characteristics and reliability for deep submicron devices with 30 $\AA$ $N_2$O gate oxide.

The MOSFET Hump Characteristics Occurring at STI Channel Edge (STI 채널 모서리에서 발생하는 MOSFET의 험프 특성)

  • 김현호;이천희
    • Journal of the Korea Society for Simulation
    • /
    • v.11 no.1
    • /
    • pp.23-30
    • /
    • 2002
  • An STI(Shallow Trench Isolation) by using a CMP(Chemical Mechanical Polishing) process has been one of the key issues in the device isolation[1] In this paper we fabricated N, P-MOSFEET tall analyse hump characteristics in various rounding oxdation thickness(ex : Skip, 500, 800, 1000$\AA$). As a result we found that hump occurred at STI channel edge region by field oxide recess. and boron segregation(early turn on due to boron segregatiorn at channel edge). Therefore we improved that hump occurrence by increased oxidation thickness, and control field oxide recess( 20nm), wet oxidation etch time(19HF,30sec), STI nitride wet cleaning time(99HF, 60sec+P 90min) and fate pre-oxidation cleaning time (U10min+19HF, 60sec) to prevent hump occurring at STI channel edge.

  • PDF

Effect of slurries on the dishing of Shallow Trench Isolation structure during CMP process

  • Lee, Hoon;Lim, Dae-Soon;Lee, Sang-Ick
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.443-444
    • /
    • 2002
  • The uniformity of field oxide is critical to isolation property of device in STI, so the control of field oxide thickness in STI-CMP becomes enormously important. The loss of field oxide in shallow trench isolation comes mainly from dishing and erosion in STI-CMP. In this paper, the effect of slurries on the dishing was investigated with both blanket and patterned wafers were selected to measure the removal rate, selectivity and dishing amount. Dishing was a strong function of pattern spacing and types of slurries. Dishing was significantly decreased with decreasing pattern spacing for both slurries. Significantly lower dishing with ceria based slurry than with silica based slurry were achieved when narrow pattern spacing were used. Possible dishing mechanism with two different slurries were discussed based on the observed experimental results.

  • PDF

Effect of pattern spacing and slurry types on the surface characteristics in 571-CMP process (STI-CMP공정에서 표면특성에 미치는 패턴구조 및 슬러리 종류의 효과)

  • Lee, Hoon;Lim, Dae-Soon;Lee, Sang-Ick
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.272-278
    • /
    • 2002
  • Recently, STI(Shallow Trench Isolation) process has attracted attention for high density of semiconductor device as a essential isolation technology. In this paper, the effect of pattern density, trench width and selectivity of slurry on dishing in STI CMP process was investigated by using specially designed isolation pattern. As trench width increased, the dishing tends to increase. At $20{\mu}m$ pattern size, the dishing was decreased with increasing pattern density Low selectivity slurry shows less dishing at over $160{\mu}m$ trench width, whereas high selectivity slurry shows less dishing at below $160{\mu}m$ trench width.

  • PDF