• 제목/요약/키워드: SOI technology

검색결과 178건 처리시간 0.027초

나노 와이어 MOSFET 구조의 광검출기를 가지는 SOI CMOS 이미지 센서의 픽셀 설계 (Design of SOI CMOS image sensors using a nano-wire MOSFET-structure photodetector)

  • 도미영;신영식;이성호;박재현;서상호;신장규;김훈
    • 센서학회지
    • /
    • 제14권6호
    • /
    • pp.387-394
    • /
    • 2005
  • In order to design SOI CMOS image sensors, SOI MOSFET model parameters were extracted using the equation of bulk MOSFET model parameters and were optimized using SPICE level 2. Simulated I-V characteristics of the SOI NMOSFET using the extracted model parameters were compared to the experimental I-V characteristics of the fabricated SOI NMOSFET. The simulation results agreed well with experimental results. A unit pixel for SOI CMOS image sensors was designed and was simulated for the PPS, APS, and logarithmic circuit using the extracted model parameters. In these CMOS image sensors, a nano-wire MOSFET photodetector was used. The output voltage levels of the PPS and APS are well-defined as the photocurrent varied. It is confirmed that SOI CMOS image sensors are faster than bulk CMOS image sensors.

SDB와 전기화학적 식각정지에 의한 마이크로 시스템용 매몰 공동을 갖는 SOI 구조의 제조 (Fabrication of SOI Structures with Buried Cavities for Microsystems SDB and Electrochemical Etch-stop)

  • 정귀상;강경두;최성규
    • 센서학회지
    • /
    • 제11권1호
    • /
    • pp.54-59
    • /
    • 2002
  • 본 논문은 Si기판 직접접합기술과 전기화학적 식각정지를 이용하여 마이크로 시스템용 매몰 공동을 갖는 SOI 구조물의 일괄제조에 대한 새로운 공정기술에 관한 것이다. 저비용의 전기화학적 식각정지법으로 SOI의 정확한 두께를 제어하였다. 핸들링 기판 위에서 Si 이방성 습식식각으로 공동을 제조하였다. 산화막을 갖는 두 장의 Si기판을 직접접합한 후, 고온 열처리($1000^{\circ}C$, 60분)를 시행하고 전기화학적 식각정지로 매몰 공동을 갖는 SDB SOI 구조를 박막화하였다. 제조된 SDB SOI 구조물 표면의 거칠기는 래핑과 폴리싱에 의한 기계적인 방법보다도 우수했다. 매몰 공동을 갖는 SDB SOI 구조는 새로운 마이크로 센서와 마이크로 엑츄에이터에 대단히 효과적이며 다양한 응용이 가능한 기판으로 사용될 것이다.

CMOS Microcontroller IC와 고밀도 원형모양SOI 마이크로센서의 단일집적 (A Monolithic Integration with A High Density Circular-Shape SOI Microsensor and CMOS Microcontroller IC)

  • 이명옥;문양호
    • 전기전자학회논문지
    • /
    • 제1권1호
    • /
    • pp.1-10
    • /
    • 1997
  • It is well-known that rectangular bulk-Si sensors prepared by etch or epi etch-stop micromachining technology are already in practical use today, but the conventional bulk-Si sensor shows some drawbacks such as large chip size and limited applications as silicon sensor device is to be miniaturized. We consider a circular-shape SOI(Silicon-On-Insulator) micro-cavity technology to facilitate multiple sensors on very small chip, to make device easier to package than conventional sensor like pressure sensor and to provide very high over-pressure capability. This paper demonstrates the cross-functional results for stress analyses(targeting $5{\mu}m$ deflection and 100MPa stress as maximum at various applicable pressure ranges), for finding permissible diaphragm dimension by output sensitivity, and piezoresistive sensor theory from two-type SOI structures where the double SOI structure shows the most feasible deflection and small stress at various ambient pressures. Those results can be compared with the ones of circular-shape bulk-Si based sensor$^{[17]}. The SOI micro-cavity formed the sensors is promising to integrate with calibration, gain stage and controller unit plus high current/high voltage CMOS drivers onto monolithic chip.

  • PDF

SOI와 트랜치 구조를 이용한 초저소비전력형 미세발열체의 제작과 그 특성 (The Fabrication of Micro-heaters with Low Consumption Power Using SOI and Trench Structures and Its Characteristics)

  • 정귀상;홍석우;이원재;송재성
    • 한국전기전자재료학회논문지
    • /
    • 제14권3호
    • /
    • pp.228-233
    • /
    • 2001
  • This paper presents the optimized design, fabrication and thermal characteristics of micro-heaters for thermal MEMS (micro elelctro mechanical system) applications usign SOI (Si-on-insulator) and trench structures. The micro-heater is based on a thermal measurement principle and contains for thermal isolation regions a 10㎛ thick Si membrane with oxide-filled trenches in the SOI membrane rim. The micro-heater was fabricated with Pt-RTD (resistance thermometer device) on the same substrate by suing MgO as medium layer. The thermal characteristics of the micro-heater wit the SOI membrane is 280$\^{C}$ at input power 0.9W; for the SOI membrane with 10 trenches, it is 580$\^{C}$ due to reduction of the external thermal loss. Therefore, the micro-heater with trenches in SOI membrane rim provides a powerful and versatile alternative technology for improving the performance of micro-thermal sensors and actuators.

  • PDF

SOI와 드랜치 구조를 이용한 초저소비전력형 미세발열체의 제작 (The fabrication of ultra-low consumption power type micro-heaters using SOI and trenche structures)

  • 정귀상;이종춘;김길중
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2000년도 하계학술대회 논문집
    • /
    • pp.569-572
    • /
    • 2000
  • This paper presents the optimized fabrication and thermal characteristics of micro-heaters for thermal MEMS applications using a SDB SOI substrate. The micro-heater is based on a thermal measurement principle and contains for thermal isolation regions a 10$\mu\textrm{m}$ thick silicon membrane with oxide-filled trenches in the SOI membrane rim. The micro-heater was fabricated with Pt-RTD(Resistance Thermometer Device)on the same substrate by using MgO as medium layer. The thermal characteristics of the micro-heater with the SOI membrane is 280$^{\circ}C$ at input Power 0.9 W; for the SOI membrane with 10 trenches, it is 580$^{\circ}C$ due to reduction of the external thermal loss. Therefore, the micro-heater with trenches in SOI membrane rim provides a powerful and versatile alternative technology for improving the performance of micro thermal sensors and actuators.

  • PDF

SiGe/Si 이종접합구조의 채널을 이용한 SOI n-MOSFET의 DC 특성 (DC Characteristic of Silicon-on-Insulator n-MOSFET with SiGe/Si Heterostructure Channel)

  • 최아람;최상식;양현덕;김상훈;이상흥;심규환
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2006년도 하계학술대회 논문집 Vol.7
    • /
    • pp.99-100
    • /
    • 2006
  • Silicon-on-insulator(SOI) MOSFET with SiGe/Si heterostructure channel is an attractive device due to its potent use for relaxing several limits of CMOS scaling, as well as because of high electron and hole mobility and low power dissipation operation and compatibility with Si CMOS standard processing. SOI technology is known as a possible solution for the problems of premature drain breakdown, hot carrier effects, and threshold voltage roll-off issues in sub-deca nano-scale devices. For the forthcoming generations, the combination of SiGe heterostructures and SOI can be the optimum structure, so that we have developed SOI n-MOSFETs with SiGe/Si heterostructure channel grown by reduced pressure chemical vapor deposition. The SOI n-MOSFETs with a SiGe/Si heterostructure are presented and their DC characteristics are discussed in terms of device structure and fabrication technology.

  • PDF

부분 공핍형 SOI 게이트의 통계적 타이밍 분석 (Statistical Timing Analysis of Partially-Depleted SOI Gates)

  • 김경기
    • 대한전자공학회논문지SD
    • /
    • 제44권12호
    • /
    • pp.31-36
    • /
    • 2007
  • 본 논문은 100 nm BSIMSOI 3.2 기술을 사용한 부분 공핍형 SOI (Partially-Depleted SOI: PD-SOI) 회로들의 정확한 타이밍 분석을 위한 새로운 통계적 특징화 방법과 추정 방법을 제안한다. 제안된 타이밍 추정 방법은 Matlab, Hspice, 그리고 C 언어로 구현되고, ISCAS 85 벤치마크 회로들을 사용해서 검증된다. 실험 편과는 Monte Carlo 시뮬레이션과 비교해 5 % 내의 에러를 보여준다.

SDB SOI 흘 센서의 온도 특성 (Temperature Characteristics of SDB SOI Hall Sensors)

  • 정귀상
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1995년도 춘계학술대회 논문집
    • /
    • pp.227-229
    • /
    • 1995
  • Using thermal oxide SiO$_2$ as a dielectrical isolation layer, SOI Hall sensors without pn junction isolation have been fabricated on Si/SiO$_2$/Si structures. The SOI structure was formed by SDB (Si- wafer direct bonding) technology. The Hall voltage and the sensitivity of Si Hall devices implemented on the SDB SOI structure show good linearity with respect to the appled magnetic flux density and supplied current. The product sensitivity of the SDB SOI Hall device is average 600V/V.T. In the trmperature range of 25 to 300$^{\circ}C$, the shifts of TCO(Temperature Coefficient of the Offset Voltage) and TCS(Temperature Coefficient of the Product Sensitivity) are less than ${\pm}$ 6.7x10$\^$-3/ C and ${\pm}$8.2x10$\^$04/$^{\circ}C$, respectively. These results indicate that the SDB SOI structure has potential for the development of Hall sensors with a high-sensitivity and high-temperature operation.

  • PDF

전기화학적 식각정지에 의해 제조된 SDB SOI기판의 평탄도 (Flatness of a SOB SOI Substrate Fabricated by Electrochemical Etch-stop)

  • 정귀상;강경두
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2000년도 춘계학술대회 논문집 전자세라믹스 센서 및 박막재료 반도체재료 일렉트렛트 및 응용기술
    • /
    • pp.126-129
    • /
    • 2000
  • This paper describes on the fabrication of a SOI substrate by SDB technology and electrochemical etch-stop. The surface of the thinned SDB SOI substrate is more uniform than that of grinding or polishing by mechanical method, and this process was found to be very accurate method for SOI thickness control. During electrochemical etch-stop, leakage current versus voltage curves were measured for analysis of the open current potential (OCP) point, the passivation potential (PP) point and anodic passivation potential. The surface roughness and the controlled thickness selectivity of the fabricated a SDB SOI substrate were evaluated by using AFM and SEM, respectively.

  • PDF

Bonded SOI 웨이퍼 제조를 위한 기초연구 (A Fundamental Study of the Bonded SOI Water Manufacturing)

  • 문도민;강성건;정해도
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 춘계학술대회 논문집
    • /
    • pp.921-926
    • /
    • 1997
  • SOI(Silicon On lnsulator) technology is many advantages in the gabrication of MOS(Metal-Oxide Semiconductor) and CMOS(Complementary MOS) structures. These include high speed, lower dynamic power consumption,greater packing density, increased radiation tolearence et al. In smiple form of bonded SOL wafer manufacturing, creation of a bonded SOI structure involves oxidizing at least one of the mirror polished silicon surfaces, cleaning the oxidized surface and the surface of the layer to which it will be bonded,bringing the two cleanded surfaces together in close physical proximity, allowing the subsequent room temperature bonding to proceed to completion, and than following this room temperature joining with some form of heat treatment step,and device wafer is thinned to the target thickness. This paper has been performed to investigate the possibility of the bonded SOI wafer manufacturing Especially, we focused on the bonding quality and thinning method. Finally,we achieved the bonded SOI wafer that Si layer thickness is below 3 .mu. m and average roughness is below 5.angs.

  • PDF