• Title/Summary/Keyword: SEE(Single Event Effect)

Search Result 11, Processing Time 0.024 seconds

THE ANALYSIS ON SPACE RADIATION ENVIRONMENT AND EFFECT OF THE KOMPSAT-2 SPACECRAFT(II): SINGLE EVENT EFFECT (아리랑 2호의 방사능 환경 및 영향에 관한 분석(II)- SINGLE EVENT 영향 중심으로 -)

  • 백명진;김대영;김학정
    • Journal of Astronomy and Space Sciences
    • /
    • v.18 no.2
    • /
    • pp.163-173
    • /
    • 2001
  • In this paper, space radiation environment and single event effect(SEE) have been analyzed for the KOMPSAT-2 operational orbit. As spacecraft external and internal space environment, trapped proton, SEP(solar energetic particle) and GCR(galactic cosmic ray) high energy Protons and heavy ions spectrums are analyzed. Finally, SEU and SEL rate prediction has been performed for the Intel 80386 microprocessor CPU that is planned to be used in the KOMPSAT-2. As the estimation results, under nominal operational condition, it is predicted that trapped proton and high energetic proton induced SBU effect will not occur. But, it is predicted that heavy ion induced SEU can occur several times during KOMPSAT-2 3-year mission operation. KOMPSAT-2 has been implementing system level design to mitigate SEU occurrence using processor CPU error detection function of the on-board flight software.

  • PDF

System-on-chip single event effect hardening design and validation using proton irradiation

  • Weitao Yang;Yang Li;Gang Guo;Chaohui He;Longsheng Wu
    • Nuclear Engineering and Technology
    • /
    • v.55 no.3
    • /
    • pp.1015-1020
    • /
    • 2023
  • A multi-layer design is applied to mitigate single event effect (SEE) in a 28 nm System-on-Chip (SoC). It depends on asymmetric multiprocessing (AMP), redundancy and system watchdog. Irradiation tests utilized 70 and 90 MeV proton beams to examine its performance through comparative analysis. Via examining SEEs in on-chip memory (OCM), compared with the trial without applying the multi-layer design, the test results demonstrate that the adopted multi-layer design can effectively mitigate SEEs in the SoC.

Design of Radiation Hardened Shift Register and SEU Measurement and Evaluation using The Proton (내방사선용 Shift Register의 제작 및 양성자를 이용한 SEU 측정 평가)

  • Kang, Geun Hun;Roh, Young Tak;Lee, Hee Chul
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.8
    • /
    • pp.121-127
    • /
    • 2013
  • Memory devices including SRAM and DRAM are very susceptible to high energy radiation particles in the space. Abnormal operation of the devices is caused by SEE or TID. This paper presents a method to estimate proton SEU cross section representing the susceptibility of the latch circuit that the unit cell of the SRAM and proposes a new latch circuit to mitigate the SEU. 50b shift register was fabricated by using the conventional latch and the proposed latch in $0.35{\mu}m$ process. Irradiation experiment was conducted at KIRAMS by using 43MeV proton beam. It was found that the proposed latch-shift register is not affected by the radiation environment compared to the conventional latch-shift register.

HAUSAT-2 SATELLITE RADIATION ENVIRONMENT ANALYSIS AND SOFTWARE RAMMING CODE EDAC IMPLEMENTATION (HAUSAT-2 위성의 방사능 환경해석 및 소프트웨어 HAMMING CODE EDAC의 구현에 관한 연구)

  • Jung, Ji-Wan;Chang, Young-Keun
    • Journal of Astronomy and Space Sciences
    • /
    • v.22 no.4
    • /
    • pp.537-558
    • /
    • 2005
  • This paper addresses the results of HAUSAT-2 radiation environment and effect analyses, including TID and SEE analyses. Trapped proton and electron, solar proton, galactic cosmic ray models were considered for HAUSAT-2 TID radiation environment analysis. TID was analyzed through total dose-depth curve and the radiation tolerance of TID for HAUSAT-2 components was verified by using DMBP method and sectoring analysis. HAUSAT-2 LET spectrum for heavy ion and proton were also analyzed for SEE investigation. SEE(SEU, SEL) analyses were accomplished for MPC860T2B microprocessor and K6X8008T2B memory. It was estimated that several SEUs may occur without SEL during the HAUSAT-2 mission life(2 years). Software Hamming Code EDAC has been implemented to detect and correct the SEU. In this study, all radiation analyses were conducted by using SPENVIS software.

Recent Advances in Radiation-Hardened Sensor Readout Integrated Circuits

  • Um, Minseong;Ro, Duckhoon;Kang, Myounggon;Chang, Ik Joon;Lee, Hyung-Min
    • Journal of Semiconductor Engineering
    • /
    • v.1 no.3
    • /
    • pp.81-87
    • /
    • 2020
  • An instrumentation amplifier (IA) and an analog-to-digital converter (ADC) are essential circuit blocks for accurate and robust sensor readout systems. This paper introduces recent advances in radiation-hardening by design (RHBD) techniques applied for the sensor readout integrated circuits (IC), e.g., the three-op-amp IA and the successive-approximation register (SAR) ADC, operating against total ionizing dose (TID) and singe event effect (SEE) in harsh radiation environments. The radiation-hardened IA utilized TID monitoring and adaptive reference control to compensate for transistor parameter variations due to radiation effects. The radiation-hardened SAR ADC adopts delay-based double-feedback flip-flops to prevent soft errors which flips the data bits. Radiation-hardened IA and ADC were verified through compact model simulation, and fabricated CMOS chips were measured in radiation facilities to confirm their radiation tolerance.

A Study of Static Random Access Memory Single Event Effect (SRAM SEE) Test using 100 MeV Proton Accelerator (100 MeV 양성자가속기를 활용한 SRAM SEE(Static Random Access Memory Single Event Effect) 시험 연구)

  • Wooje Han;Eunhye Choi;Kyunghee Kim;Seong-Keun Jeong
    • Journal of Space Technology and Applications
    • /
    • v.3 no.4
    • /
    • pp.333-341
    • /
    • 2023
  • This study aims to develop technology for testing and verifying the space radiation environment of miniature space components using the facilities of the domestic 100 MeV proton accelerator and the Space Component Test Facility at the Space Testing Center. As advancements in space development progress, high-performance satellites increasingly rely on densely integrated circuits, particularly in core components components like memory. The application of semiconductor components in essential devices such as solar panels, optical sensors, and opto-electronics is also on the rise. To apply these technologies in space, it is imperative to undergo space environment testing, with the most critical aspect being the evaluation and testing of space components in high-energy radiation environments. Therefore, the Space Testing Center at the Korea testing laboratory has developed a radiation testing device for memory components and conducted radiation impact assessment tests using it. The investigation was carried out using 100 MeV protons at a low flux level achievable at the Gyeongju Proton Accelerator. Through these tests, single event upsets observed in memory semiconductor components were confirmed.

Prediction of SEE Rates for MPC860 Based on Proton Irradiation Test (양성자 조사 시험에 기초한 MPC860 소자의 SEE 발생률 예측)

  • Kim, Sung-Joon;Seon, Jong-Ho;Jeong, Seong-Keun;Min, Kyoung-Wook;Choe, Won-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.5
    • /
    • pp.84-90
    • /
    • 2004
  • A prediction of SEE rates for a candidate microprocessor is made based on the ground experiment results with a proton accelerator. Populations of charged particles in space are estimated with numerical models such as AP8, JPL91 and CREME. The cross section curves that are previously obtained with the accelerator are then employed for SEE prediction. Both the high and low inclinations are considered for low-earth orbits with nominal altitudes of about 685km. The results show that the occurrence rate of SEEs for the candidate device is acceptable for low-inclinations, but can be considerable under worst conditions for high inclinations.

Environment Simulation and Effect Estimation of Space Radiation for COMS Communication Payload (통신해양기상위성 통신 탑재체의 우주 방사선 환경 모사 및 영향 추정)

  • Kim, Seong-Jun;U, Hyeong-Je;Seon, Jong-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.11
    • /
    • pp.76-83
    • /
    • 2006
  • Space radiation environment for COMS is simulated by NASA AP8/AE8, JPL91 and NRL CREME models, respectively for trapped particle, solar proton and cosmic-ray. The radiation effects on electronic devices in communication payload are also estimated by using simulation results. Dose-depth curve and LET spectrum are calculated for estimating total ionizing dose(TID) effect and single event effect(SEE) respectively. Spherical sector method is applied to dose estimation at each position in the units of communication payload to consider shielding effect of platform and housing. Total ionizing dose at each position varies by 8 times through shielding effect under the same external space radiation environment.

TID and SEL Testing on PWM-IC Controller of DC/DC Power Buck Converter (DC/DC 강압컨버터의 PWM-IC 제어기의 TID 및 SEL 실험)

  • Lho, Young Hwan;Hwang, Eui Sung;Jeong, Jae-Seong;Han, Changwoon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.1
    • /
    • pp.79-84
    • /
    • 2013
  • DC/DC switching power converters are commonly used to generate a regulated DC output voltage with high efficiency. The DC/DC converter is composed of a PWM-IC (pulse width modulation-integrated circuit) controller, a MOSFET (metal-oxide semiconductor field effect transistor), inductor, capacitor, etc. It is shown that the variation of threshold voltage and the offset voltage in the electrical characteristics of PWM-IC increase by radiation effects in TID (Total Ionizing Dose) testing at the low energy ${\gamma}$ rays using $^{60}Co$, and 4 heavy ions applied for SEL (Single Event Latch-up) make the PWM pulse unstable. Also, the output waveform for the given input in the DC/DC converter is observed by the simulation program with integrated circuit emphasis (SPICE). TID testing on PWM-IC is accomplished up to the total dose of 30 krad, and the cross section($cm^2$) versus LET($MeV/mg/cm^2$) in the PWM operation is studied at SEL testing after implementation of the controller board.

TID and SEGR Testing on MOSFET of DC/DC Power Buck Converter (DC/DC 강압컨버터용 MOSFET의 TID 및 SEGR 실험)

  • Lho, Young Hwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.11
    • /
    • pp.981-987
    • /
    • 2014
  • DC/DC switching power converters are commonly used to generate a regulated DC output voltage with high efficiency. The DC/DC converter is composed of a MOSFET (metal-oxide semiconductor field effect transistor), a PWM-IC (pulse width modulation-integrated circuit) controller, inductor, capacitor, etc. It is shown that the variation of threshold voltage and the breakdown voltage in the electrical characteristics of MOSFET occurs by radiation effects in TID (Total Ionizing Dose) testing at the low energy ${\gamma}$ rays using $^{60}Co$, and 5 heavy ions make the gate of MOSFET broken in SEGR (Single Event Gate Rupture) testing. TID testing on MOSFET is accomplished up to the total dose of 40 krad, and the cross section($cm^2$) versus LET(MeV/mg/$cm^2$) in the MOSFET operation is studied at SEGR testing after implementation of the controller board.