DOI QR코드

DOI QR Code

Recent Advances in Radiation-Hardened Sensor Readout Integrated Circuits

  • Um, Minseong (School of Electrical Engineering, Korea University) ;
  • Ro, Duckhoon (School of Electrical Engineering, Korea University) ;
  • Kang, Myounggon (Department of Electronics Engineering, Korea National University of Transportation) ;
  • Chang, Ik Joon (Department of Electronic Engineering, Kyung Hee University) ;
  • Lee, Hyung-Min (School of Electrical Engineering, Korea University)
  • Received : 2020.11.30
  • Accepted : 2020.12.21
  • Published : 2020.12.30

Abstract

An instrumentation amplifier (IA) and an analog-to-digital converter (ADC) are essential circuit blocks for accurate and robust sensor readout systems. This paper introduces recent advances in radiation-hardening by design (RHBD) techniques applied for the sensor readout integrated circuits (IC), e.g., the three-op-amp IA and the successive-approximation register (SAR) ADC, operating against total ionizing dose (TID) and singe event effect (SEE) in harsh radiation environments. The radiation-hardened IA utilized TID monitoring and adaptive reference control to compensate for transistor parameter variations due to radiation effects. The radiation-hardened SAR ADC adopts delay-based double-feedback flip-flops to prevent soft errors which flips the data bits. Radiation-hardened IA and ADC were verified through compact model simulation, and fabricated CMOS chips were measured in radiation facilities to confirm their radiation tolerance.

Keywords

References

  1. V. Martin, L. Bertalot, J.M. Drevon, R. Reichle, S. Simrock, G. Vayakis, M. Walsh, J. Verbeeck, Y. Cao, and M. Van Uffelen, "Electronic components exposed to nuclear radiation in ITER diagnostic systems: Current investigations and perspectives", In Proceedings of the EPS Conference on Plasma Diagnostics (ECPD), Frascati, Italy, pp. 1-7, Apr. 2015.
  2. P. Leroux, W. Van Koeckhoven, J. Verbeeck, M. Van Uffelen, S. Esque, R. Ranz, C. Damiani, and D. Hamilton, "Design of a MGy radiation tolerant resolver-to-digital convertor IC for remotely operated maintenance in harsh environments", Fusion Eng. Des., Elsevier, 2314-2319, 2014.
  3. J. Verbeeck, Y. Cao, M. Van Uffelen, L.M. Casellas, C. Damiani, E.R. Morales, R.R. Santana, R. Meek, B. Hais, and D. Hamilton, "Qualification method for a 1 MGy-tolerant front-end chip designed in 65 nm CMOS for the read-out of remotely operated sensors and actuators during maintenance in ITER", Fusion Eng. Des., Elsevier, 1002-1005, 2015.
  4. H. J. Barnaby, "Total-Ionizing-Dose Effects in Modern CMOS Technologies", IEEE Trans. Nucl. Sci., vol. 53, no. 6, pp. 3103-3121, Dec. 2006. https://doi.org/10.1109/TNS.2006.885952
  5. T. L. Turflinger, "Single-event effects in analog and mixed-signal integrated circuits", IEEE Trans. Nucl. Sci., vol. 43, no. 2, pp. 594-602, Apr. 1996. https://doi.org/10.1109/23.490903
  6. N. F. Haddad et al., "Incremental Enhancement of SEU Hardened 90 nm CMOS Memory Cell," IEEE Trans. Nucl. Sci., vol. 58, no. 3, pp. 975-980, Jun. 2011. https://doi.org/10.1109/TNS.2011.2128882
  7. L. T. Clark, K. C. Mohr, K. E. Holbert, X. Yao, J. Knudsen, and H. Shah, "Optimizing Radiation Hard by Design SRAM Cells", IEEE Trans. Nucl. Sci., vol. 54, no. 6, pp. 2028-2036, Dec. 2007. https://doi.org/10.1109/TNS.2007.909482
  8. U. Gatti, C. Calligaro, E. Pikhay and Y. Roizin, "Radiationhardened techniques for CMOS flash ADC", IEEE International Conference on Electronics, Circuits and Systems (ICECS), Marseille, pp. 1-4, Dec. 2014.
  9. K. Jeong, D. Ro, M. Kang, and H.-M. Lee, "A Radiation-Hardened Instrumentation Amplifier for Sensor Readout Integrated Circuits in Nuclear Fusion Application", MDPI Electronics, Dec. 2018.
  10. D. Ro, C. Min, M. Kang, I.J. Chang, and H.-M. Lee, "A Radiation-Hardened SAR ADC with Delay-Based Dual Feedback Flip-Flops for Sensor Readout Systems", MDPI Sensors, Jan. 2020.
  11. L.D.T. Dang, J.S. Kim, and I.J. Chang, "We-Quatro: Radiation-hardened SRAM cell with parametric process variation tolerance", IEEE Trans. Nucl. Sci. 2017, 64, 2489-2496. https://doi.org/10.1109/TNS.2017.2728180
  12. M. Omana, D. Rossi, and C. Metra, "Latch Susceptibility to Transient Faults and New Hardening Approach", IEEE Trans. Comput., 56, 1255-1268, 2007. https://doi.org/10.1109/TC.2007.1070
  13. X. Xi, M. Dunga, J. He, W. Liu, K.M. Cao, X. Jin, J.J. Ou, M. Chan, A.M. Niknejad, and C. Hu, "BSIM4.3.0 MOSFET Model, User's Manual", Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA, USA, 2003.
  14. Y.J. Jeong, J. Jeon, S. Lee, M. Kang, H. Jhon, H.J. Song, C.E. Park, and T.K. An, "Development of organic semiconductors based on quinacridone derivatives for organic field-effect transistors: High-voltage logic circuit applications", IEEE J. Electron Devices Soc., 5, 209-213, 2017. https://doi.org/10.1109/JEDS.2017.2665638
  15. M. Kang, K. Lee, D.H. Chae, B.-G. Park, and H. Shin, "The compact modeling of channel potential in sub-30-nm NAND flash cell string", IEEE Electron Device Lett., 33, 321-323, 2012. https://doi.org/10.1109/LED.2011.2179283
  16. M. Kang, I.H. Park, I.J. Chang, K. Lee, S. Seo, B.-G. Park, and H. Shin, "An accurate compact model considering direct-channel interference of adjacent cells in sub-30-nm NAND flash technologies", IEEE Electron Device Lett., 33, 1114-1116, 2012. https://doi.org/10.1109/LED.2012.2201442