DOI QR코드

DOI QR Code

100 MeV 양성자가속기를 활용한 SRAM SEE(Static Random Access Memory Single Event Effect) 시험 연구

A Study of Static Random Access Memory Single Event Effect (SRAM SEE) Test using 100 MeV Proton Accelerator

  • 투고 : 2023.10.02
  • 심사 : 2023.10.20
  • 발행 : 2023.11.30

초록

본 연구는 국내 100 MeV 양성자가속기와 우주부품시험센터 우주전문시험시설기반을 활용하여 우주부품의 우주 방사선환경 시험검증 기술을 개발하고자 한다. 우주개발의 진전에 따라 고도화된 위성의 임무는 위성의 핵심부품인 메모리 등에 고집적 회로를 필수적으로 사용하고, 태양전지, 광학센서 및 opto-electronics 등 부수 장치에 반도체 소자의 활용이 증가하고 있다. 특히, 전자부품을 우주에 적용하기 위해서는 우주환경 시험을 반드시 거쳐야 하며, 그 중 가장 중요한 것이 고 에너지 방사선환경에서의 우주부품시험이다. 따라서 이에 필요한 우주 방사선 환경 구현 시설을 갖추어 체계적인 시험절차를 수립할 필요가 있다. 한국산업기술시험원 우주부품시험센터는 메모리 부품에 대한 방사선 시험 장치를 제작하고 이를 이용한 메모리 방사선 영향 평가 시험을 수행하였다. 경주양성자가속기에서 100 MeV 양성자를 활용하여 한국에서 활용가능한 수준의 방사선 시험을 진행하였다. 이러한 시험을 통해 메모리 반도체에서 나타나는 single event upset을 관찰할 수 있었다. 향후 해당 시험을 체계화하여 우주산업화에 기반을 마련하고자 한다.

This study aims to develop technology for testing and verifying the space radiation environment of miniature space components using the facilities of the domestic 100 MeV proton accelerator and the Space Component Test Facility at the Space Testing Center. As advancements in space development progress, high-performance satellites increasingly rely on densely integrated circuits, particularly in core components components like memory. The application of semiconductor components in essential devices such as solar panels, optical sensors, and opto-electronics is also on the rise. To apply these technologies in space, it is imperative to undergo space environment testing, with the most critical aspect being the evaluation and testing of space components in high-energy radiation environments. Therefore, the Space Testing Center at the Korea testing laboratory has developed a radiation testing device for memory components and conducted radiation impact assessment tests using it. The investigation was carried out using 100 MeV protons at a low flux level achievable at the Gyeongju Proton Accelerator. Through these tests, single event upsets observed in memory semiconductor components were confirmed.

키워드

과제정보

이 논문은 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구입니다(NRF-2019M1A3B2A01067932, NRF-2021M2D1A1045669).

참고문헌

  1. Wall J and Sinnadurai N, The past, present and future of EEE components for space application; COTS-the next generation, Proceedings of the 1998 IEEE International Frequency Control Symposium (Cat. No.98CH36165), Pasadena, CA, USA, 392-404 (1998) https://doi.org/10.1109/FREQ.1998.717933 
  2. Budroweit J, Patscheider H, Risk assessment for the use of COTS devices in space systems under consideration of radiation effects, Electronics 10, 1008 (2021). https://doi.org/10.3390/electronics10091008 
  3. Douglas S, EEE parts selection for space missions, NASA Electronic Parts and Packaging (NEPP) Program, Document ID 202300094761 (2023). 
  4. Olifer L, Mann IR, Kale A, Mauk BH, Claudepierre SG, et al., A tale of two radiation belts: the energy-dependence of self-limiting electron space radiation, Geophys. Res. Lett. 48, e2021GL095779 (2021). https://doi.org/10.1029/2021GL095779 
  5. Pearton SJ, Aitkaliyeva A, Xian M, Ren F, Khachatrian A, et al., Radiation damage in wide and ultra-wide bandgap semiconductors, ECS J. Solid State Sci. Technol. 10, 055008 (2021). https://doi.org/10.1149/2162-8777/abfc23 
  6. Kobayashi D, Scaling trends of digital single-event effects: a survey of SEU and SET parameters and comparison with transistor performance, IEEE Trans. Nucl. Sci. 68, 124-148 (2021). https://doi.org/10.1109/TNS.2020.3044659 
  7. Shangguan SP, Ma YQ, Han JW, Cui YX, Wang YH, et al., Single event effects of SiC diode demonstrated by pulsed-laser two photon absorption, Microelectron. Reliab. 125, 114364 (2021). https://doi.org/10.1016/j.microrel.2021.114364 
  8. Tonigan AM, Ball D, Vizkelethy G, Black J, Black D, et al., Impact of surface recombination on single-event charge collection in an SOI technology, IEEE Trans. Nucl. Sci. 68, 305-311 (2021). https://doi.org/10.1109/TNS.2021.3056898 
  9. Chung Y, Kim H, Kwon M, Current status of the RAON low-energy heavy ion accelerator, J. Korean Phys. Soc. 80, 693-697 (2022). https://doi.org/10.1007/s40042-021-00373-y 
  10. Lesea A, Drimer S, Fabula JJ, Carmichael C, Alfke P, The rosetta experiment: atmospheric soft error rate testing in differing technology FPGAs, IEEE Trans. Device Mater. Reliab. 5, 317-328 (2005). https://doi.org/10.1109/TDMR.2005.854207 
  11. He Z, Cai C, Liu TQ, Ye B, Mo LH, et al., Heavy ion and proton induced single event upsets in 3D SRAM, Microelectron. Reliab. 114, 113854 (2020). https://doi.org/10.1016/j.microrel.2020.113854 
  12. Luo Y, Zhang F, Pan X, Guo H, Wang Y, Impact of total ionizing dose on low energy proton single event upsets in nanometer SRAM, IEEE Trans. Nucl. Sci. 66, 1848-1853 (2019). https://doi.org/10.1109/TNS.2019.2922501 
  13. Cannon JM, Loveless TD, Estrada R, Boggs R, Lawrence SP, et al., Electrical measurement of cell-to-cell variation of critical charge in SRAM and sensitivity to single-event upsets by low-energy protons, IEEE Trans. Nucl. Sci. 68, 815-822 (2021). https://doi.org/10.1109/TNS.2021.3061672