• Title/Summary/Keyword: S-multiplication ideal

Search Result 14, Processing Time 0.017 seconds

ON S-MULTIPLICATION RINGS

  • Mohamed Chhiti;Soibri Moindze
    • Journal of the Korean Mathematical Society
    • /
    • v.60 no.2
    • /
    • pp.327-339
    • /
    • 2023
  • Let R be a commutative ring with identity and S be a multiplicatively closed subset of R. In this article we introduce a new class of ring, called S-multiplication rings which are S-versions of multiplication rings. An R-module M is said to be S-multiplication if for each submodule N of M, sN ⊆ JM ⊆ N for some s ∈ S and ideal J of R (see for instance [4, Definition 1]). An ideal I of R is called S-multiplication if I is an S-multiplication R-module. A commutative ring R is called an S-multiplication ring if each ideal of R is S-multiplication. We characterize some special rings such as multiplication rings, almost multiplication rings, arithmetical ring, and S-P IR. Moreover, we generalize some properties of multiplication rings to S-multiplication rings and we study the transfer of this notion to various context of commutative ring extensions such as trivial ring extensions and amalgamated algebras along an ideal.

SOME COMMUTATIVE RINGS DEFINED BY MULTIPLICATION LIKE-CONDITIONS

  • Chhiti, Mohamed;Moindze, Soibri
    • Bulletin of the Korean Mathematical Society
    • /
    • v.59 no.2
    • /
    • pp.397-405
    • /
    • 2022
  • In this article we investigate the transfer of multiplication-like properties to homomorphic images, direct products and amalgamated duplication of a ring along an ideal. Our aim is to provide examples of new classes of commutative rings satisfying the above-mentioned properties.

PRUFER ${\upsilon}$-MULTIPLICATION DOMAINS IN WHICH EACH t-IDEAL IS DIVISORIAL

  • Hwang, Chul-Ju;Chang, Gyu-Whan
    • Bulletin of the Korean Mathematical Society
    • /
    • v.35 no.2
    • /
    • pp.259-268
    • /
    • 1998
  • We give several characterizations of a TV-PVMD and we show that the localization R[X;S]$_{N_{\upsilon}}$ of a semigroup ring R[X;S] is a TV-PVMD if and only if R is a TV-PVMD where $N_{\upsilon}\;=\;\{f\;{\in}\;R[X]{\mid}(A_f)_{\upsilon} = R\}$ and S is a torsion free cancellative semigroup with zero.

  • PDF

A REMARK ON MULTIPLICATION MODULES

  • Choi, Chang-Woo;Kim, Eun-Sup
    • Bulletin of the Korean Mathematical Society
    • /
    • v.31 no.2
    • /
    • pp.163-165
    • /
    • 1994
  • Modules which satisfy the converse of Schur's lemma have been studied by many authors. In [6], R. Ware proved that a projective module P over a semiprime ring R is irreducible if and only if En $d_{R}$(P) is a division ring. Also, Y. Hirano and J.K. Park proved that a torsionless module M over a semiprime ring R is irreducible if and only if En $d_{R}$(M) is a division ring. In case R is a commutative ring, we obtain the following: An R-module M is irreducible if and only if En $d_{R}$(M) is a division ring and M is a multiplication R-module. Throughout this paper, R is commutative ring with identity and all modules are unital left R-modules. Let R be a commutative ring with identity and let M be an R-module. Then M is called a multiplication module if for each submodule N of M, there exists and ideal I of R such that N=IM. Cyclic R-modules are multiplication modules. In particular, irreducible R-modules are multiplication modules.dules.

  • PDF

ON WEAKLY S-PRIME SUBMODULES

  • Hani A., Khashan;Ece Yetkin, Celikel
    • Bulletin of the Korean Mathematical Society
    • /
    • v.59 no.6
    • /
    • pp.1387-1408
    • /
    • 2022
  • Let R be a commutative ring with a non-zero identity, S be a multiplicatively closed subset of R and M be a unital R-module. In this paper, we define a submodule N of M with (N :R M)∩S = ∅ to be weakly S-prime if there exists s ∈ S such that whenever a ∈ R and m ∈ M with 0 ≠ am ∈ N, then either sa ∈ (N :R M) or sm ∈ N. Many properties, examples and characterizations of weakly S-prime submodules are introduced, especially in multiplication modules. Moreover, we investigate the behavior of this structure under module homomorphisms, localizations, quotient modules, cartesian product and idealizations. Finally, we define two kinds of submodules of the amalgamation module along an ideal and investigate conditions under which they are weakly S-prime.

WEAKLY DENSE IDEALS IN PRIVALOV SPACES OF HOLOMORPHIC FUNCTIONS

  • Mestrovic, Romeo;Pavicevic, Zarko
    • Journal of the Korean Mathematical Society
    • /
    • v.48 no.2
    • /
    • pp.397-420
    • /
    • 2011
  • In this paper we study the structure of closed weakly dense ideals in Privalov spaces $N^p$ (1 < p < $\infty$) of holomorphic functions on the disk $\mathbb{D}$ : |z| < 1. The space $N^p$ with the topology given by Stoll's metric [21] becomes an F-algebra. N. Mochizuki [16] proved that a closed ideal in $N^p$ is a principal ideal generated by an inner function. Consequently, a closed subspace E of $N^p$ is invariant under multiplication by z if and only if it has the form $IN^p$ for some inner function I. We prove that if $\cal{M}$ is a closed ideal in $N^p$ that is dense in the weak topology of $N^p$, then $\cal{M}$ is generated by a singular inner function. On the other hand, if $S_{\mu}$ is a singular inner function whose associated singular measure $\mu$ has the modulus of continuity $O(t^{(p-1)/p})$, then we prove that the ideal $S_{\mu}N^p$ is weakly dense in $N^p$. Consequently, for such singular inner function $S_{\mu}$, the quotient space $N^p/S_{\mu}N^p$ is an F-space with trivial dual, and hence $N^p$ does not have the separation property.

EXTENSIONS OF NAGATA'S THEOREM

  • Hamed, Ahmed
    • Journal of the Korean Mathematical Society
    • /
    • v.55 no.4
    • /
    • pp.797-808
    • /
    • 2018
  • In [1], the authors generalize the concept of the class group of an integral domain $D(Cl_t(D))$ by introducing the notion of the S-class group of an integral domain where S is a multiplicative subset of D. The S-class group of D, $S-Cl_t(D)$, is the group of fractional t-invertible t-ideals of D under the t-multiplication modulo its subgroup of S-principal t-invertible t-ideals of D. In this paper we study when $S-Cl_t(D){\simeq}S-Cl_t(D_T)$, where T is a multiplicative subset generated by prime elements of D. We show that if D is a Mori domain, T a multiplicative subset generated by prime elements of D and S a multiplicative subset of D, then the natural homomorphism $S-Cl_t(D){\rightarrow}S-Cl_t(D_T)$ is an isomorphism. In particular, we give an S-version of Nagata's Theorem [13]: Let D be a Krull domain, T a multiplicative subset generated by prime elements of D and S another multiplicative subset of D. If $D_T$ is an S-factorial domain, then D is an S-factorial domain.

ON GRAPHS ASSOCIATED WITH MODULES OVER COMMUTATIVE RINGS

  • Pirzada, Shariefuddin;Raja, Rameez
    • Journal of the Korean Mathematical Society
    • /
    • v.53 no.5
    • /
    • pp.1167-1182
    • /
    • 2016
  • Let M be an R-module, where R is a commutative ring with identity 1 and let G(V,E) be a graph. In this paper, we study the graphs associated with modules over commutative rings. We associate three simple graphs $ann_f({\Gamma}(M_R))$, $ann_s({\Gamma}(M_R))$ and $ann_t({\Gamma}(M_R))$ to M called full annihilating, semi-annihilating and star-annihilating graph. When M is finite over R, we investigate metric dimensions in $ann_f({\Gamma}(M_R))$, $ann_s({\Gamma}(M_R))$ and $ann_t({\Gamma}(M_R))$. We show that M over R is finite if and only if the metric dimension of the graph $ann_f({\Gamma}(M_R))$ is finite. We further show that the graphs $ann_f({\Gamma}(M_R))$, $ann_s({\Gamma}(M_R))$ and $ann_t({\Gamma}(M_R))$ are empty if and only if M is a prime-multiplication-like R-module. We investigate the case when M is a free R-module, where R is an integral domain and show that the graphs $ann_f({\Gamma}(M_R))$, $ann_s({\Gamma}(M_R))$ and $ann_t({\Gamma}(M_R))$ are empty if and only if $$M{\sim_=}R$$. Finally, we characterize all the non-simple weakly virtually divisible modules M for which Ann(M) is a prime ideal and Soc(M) = 0.

THE STRUCTURE OF ALMOST REGULAR SEMIGROUPS

  • Chae, Younki;Lim, Yongdo
    • Bulletin of the Korean Mathematical Society
    • /
    • v.31 no.2
    • /
    • pp.187-192
    • /
    • 1994
  • The author extended the small properties of topological semilattices to that of regular semigroups [3]. In this paper, it could be shown that a semigroup S is almost regular if and only if over bar RL = over bar R.cap.L for every right ideal R and every left ideal L of S. Moreover, it has shown that the Bohr compactification of an almost regular semigroup is regular. Throughout, a semigroup will mean a topological semigroup which is a Hausdorff space together with a continuous associative multiplication. For a semigroup S, we denote E(S) by the set of all idempotents of S. An element x of a semigroup S is called regular if and only if x .mem. xSx. A semigroup S is termed regular if every element of S is regular. If x .mem. S is regular, then there exists an element y .mem S such that x xyx and y = yxy (y is called an inverse of x) If y is an inverse of x, then xy and yx are both idempotents but are not always equal. A semigroup S is termed recurrent( or almost pointwise periodic) at x .mem. S if and only if for any open set U about x, there is an integer p > 1 such that x$^{p}$ .mem.U.S is said to be recurrent (or almost periodic) if and only if S is recurrent at every x .mem. S. It is known that if x .mem. S is recurrent and .GAMMA.(x)=over bar {x,x$^{2}$,..,} is compact, then .GAMMA.(x) is a subgroup of S and hence x is a regular element of S.

  • PDF

Algorithm for Computing J Relations in the Monoid of Boolean Matrices (불리언 행렬의 모노이드에서의 J 관계 계산 알고리즘)

  • Han, Jae-Il
    • Journal of Information Technology Services
    • /
    • v.7 no.4
    • /
    • pp.221-230
    • /
    • 2008
  • Green's relations are five equivalence relations that characterize the elements of a semigroup in terms of the principal ideals. The J relation is one of Green's relations. Although there are known algorithms that can compute Green relations, they are not useful for finding all J relations in the semigroup of all $n{\times}n$ Boolean matrices. Its computation requires multiplication of three Boolean matrices for each of all possible triples of $n{\times}n$ Boolean matrices. The size of the semigroup of all $n{\times}n$ Boolean matrices grows exponentially as n increases. It is easy to see that it involves exponential time complexity. The computation of J relations over the $5{\times}5$ Boolean matrix is left an unsolved problem. The paper shows theorems that can reduce the computation time, discusses an algorithm for efficient J relation computation whose design reflects those theorems and gives its execution results.