THE STRUCTURE OF ALMOST REGULAR SEMIGROUPS

YOUNKI CHAE AND YONGDO LIM

The author extended the small properties of topological semilattices to that of regular semigroups [3]. In this paper, it could be shown that a semigroup S is almost regular if and only if $\overline{RL} = \overline{R \cap L}$ for every right ideal R and every left ideal L of S. Moreover, it has shown that the Bohr compactification of an almost regular semigroup is regular.

Throughout, a semigroup will mean a topological semigroup which is a Hausdorff space together with a continuous associative multiplication. For a semigroup S, we denote E(S) by the set of all idempotents of S. An element x of a semigroup S is called regular if and only if $x \in xSx$. A semigroup S is termed regular if every element of S is regular. If $x \in S$ is regular, then there exists an element $y \in S$ such that x = xyx and y = yxy (y is called an inverse of x) If y is an inverse of x, then xy and yx are both idempotents but are not always equal. A semigroup S is termed recurrent(or almost pointwise periodic) at $x \in S$ if and only if for any open set S about S, there is an integer S is recurrent at every S is said to be recurrent(or almost periodic) if and only if S is recurrent at every S is known that if S is recurrent and S is recurrent at every S is compact, then S is a subgroup of S and hence S is a regular element of S.

DEFINITION. An element x of a semigroup S is said to be almost regular if and only if $x \in \overline{xSx}$. And a semigroup S is said to be almost regular if and only if every element of S is almost regular.

EXAMPLES. (1) Regular semigroups.

(2) Let X be a locally compact Hausdorff space and denote C(X) by all continuous functions from X into itself. Then C(X) is a topological

Received April 1, 1993.

This work is done under the support of TGRC-KOSEF and the Korea Research Foundation, the Ministry of Education.

semigroup under the compact-open topology and the composition multiplication. It is easy to see that C(X) is an almost regular semigroup. In general, C(X) is not regular. For examples, let D^n be the n-disc. Then $C(D^n)$ can not be a regular semigroup as is shown below:

In [6], it is shown that $f \in C(X)$ is regular if and only if the range of X is a retract of X and it maps some subspace of X homeomorphically onto its range. Using this result, if n = 1, then non-regular element of $C(D^1)$ could be found easily. Suppose n > 1. Consider the maps

$$D^n \xrightarrow{f} D^{n-1} \xrightarrow{g} D^{n-1} / \partial D^{n-1} \cong S^{n-1}$$

where f and g are projections, and S^{n-1} is the n-1 sphere. Then gf is a continuous surjection. If gf is a regular element of $C(D^n)$, then S^{n-1} , the image of gf must be a retract of $C(D^n)$. This is impossible by the Brower No Retraction Theorem. Hence $C(D^n)$ is not regular for every natural number n.

LEMMA 1. (1) Every subsemigroup of a compact group is almost regular.

- (2) Every dense subsemigroup of a regular semigroup is almost regular.
 - (3) Every almost periodic semigroup is almost regular.
- *Proof.* (1) Let G be a compact group and let S be a subsemigroup of G. Let $x \in S$. Since G is compact, $\{x, x^2, \dots\}$ is a compact subsemigroup with identity 1. For any open subset U containing 1, we can choose a large n such that $x^n \in U$. Thus $(Ux \cap S) \cap xSx \neq \phi$. Since U is arbitrary, $x \in \overline{xSx}$. Therefore S is almost regular.
- (2) Let S be a dense subsemigroup of a regular semigroup T. Let $x \in S$ and V be an open subset of S containing x. Then we may assume that $V = U \cap S$, where U is an open set in T. Since T is regular, x = xyx for some $y \in T$. By the continuity of multiplication, there exists an open set W in T such that $xWx \subset U$. Since S is dense in T, $xwx \in U \cap S = V$ for some $w \in W \cap S$. Thus S is almost regular.
- (3) Let S be an almost periodic semigroup and let U be an open subset of S containing $x \in S$. Since $x \in \{x^2, x^3, \dots\}$ and by the continuity of multiplication, we can choose a national number n > 1 such that $x^n \in U$. Thus $xSx \cap U \neq \phi$ and hence S is almost regular.

LEMMA 2. Let S, T be a semigroups and let $f: S \to T$ be a continuous homomorphism. If S is almost regular, then f(S) also is.

Proof. Let $t \in f(S)$ and U be an open subset containing t. Then there is $x \in S$ such that $x \in f^{-1}(U)$ and f(x) = t. Since S is almost regular and f is continuous, $xax \in f^{-1}(U)$ for some $a \in S$, and hence $t = tf(a)t \in U$. Therefore f(S) is almost regular.

LEMMA 3. . (1) If S is an almost regular subsemigroup of a semi-group T such that \overline{S} is compact, then \overline{S} is regular. In particular, if S is an ideal of \overline{S} , then S is regular.

- (2) Every compact ideal of an almost regular semigroup is regular.
- **Proof.** (1) Let $x \in S$. Then $x \in cl_S(xSx)$ the closure of xSx in S. Since \overline{S} is compact in T, $cl_S(xSx) \subset x\overline{S}x$. Thus every element of S is regular in \overline{S} . Now let $y \in \overline{S}$. Then there exists a net $\{y_\alpha\}$ in S such that $y_\alpha \to y$. Since y_α is regular in \overline{S} , $y_\alpha = y_\alpha k_\alpha y_\alpha$ for some $k_\alpha \in \overline{S}$. Since \overline{S} is compact, we may assume that $k_\alpha \to k$ in \overline{S} . So y = yky is regular. Suppose S is an ideal of \overline{S} . Then for $x \in S$, x = xax for some $a \in \overline{S}$. Since $ax \in S$, $axa \in S$. Thus x = x(axa)x and hence x is regular in S.
- (2) Let I be a compact ideal of an almost regular semigroup and let $x \in I$. Since

$$xSx \subset xS(\overline{xSx}) \subset xS(\overline{ISx}) \subset xS(\overline{Ix}) = xSIx \subset xIx,$$

 $x \in \overline{xSx} \subset \overline{xIx} = xIx$ and hence I is regular.

THEOREM 4. . Let S be a locally compact almost regular semigroup such that the multiplication on S can be extended to the one-point compactication $T = S \cup \{\infty\}$. Then

- (1) $E(S) \neq \phi$.
- (2) For $x \in S$, if $x\infty = \infty$ or $\infty x\infty \in S$, then x is regular in S.
- **Proof.** (1) From Lemma 3, T is a regular semigroup. For $x \in S$, x = xax for some $a \in T$. If $a \in S$, then $ax \in E(S)$. If $a = \infty$, then $\infty x \in E(T)$. Thus $\infty x = \infty$ or $\infty x \in E(S)$. If $\infty x = \infty$, then $x = x \infty x = \infty x$ and hence $x^2 = x \in E(S)$.
- (2) Since $x = x \infty x$ implies that $x = x(\infty x \infty)x$, x is regular in S if $\infty x \infty \in S$.

Younki Chae and Yongdo Lim

COROLLARY. Let S be a dense locally compact subsemigroup of a compact regular semigroup T such that the multiplication on S can be extended continuously to the one-point compactification $S \cup \{\infty\}$. If T has an identity or zero, then S is regular.

Proof. By Lemma 1 and 3, S is almost regular and $S \cup \{\infty\}$ is regular. If T has an identity [zero], then ∞ is an identity [zero] from [1, p104]. From Theorem 4, the proof is immediate.

THEOREM 5. Let S be a locally compact almost periodic semigroup such that the minimal ideal M(S) of S is non-empty and compact. Then for each open subset V containing M(S), there exists an open regular subsemigroup J such that $M(S) \subset J \subset V$.

Proof. From [1, p129], there exists an open subset J such that $M(S) \subset J \subset V$ and J is an ideal of the compact subset \overline{J} of S. Let $x \in J$. Since S is almost periodic, $U \cap \{x^2, x^3, \dots\} \neq \phi$, for any open subset U containing x. This implies that J is an almost regular subsemigroup of S. From Lemma 3, \overline{J} is regular and hence J is regular.

THEOREM 6. The Bohr compactification of an almost regular semigroup is regular

Proof. Let (f, B) be the Bohr compactification of an almost regular semigroup S. Then f is a continuous homomorphism from S into B and $\overline{f(S)} = B$. From Lemma 2 and 3, B is regular.

For a subset V of a semigroup S, let $V(a) = \{x : axa \in V\}$. If V is an open subset of an almost regular semigroup S containing a, then V(a) is non-empty. It is clear that $V(a) \subset W(a)$, for $V \subset W$. By the continuity of the multiplication of the semigroup, the following Lemma is immediate.

LEMMA 7. Let a be an element of an almost regular semigroup S. Then V(a) is open (closed) whenever V is open (closed)

THEOREM 8. Let S be an almost regular semigroup and let V be an open subset of $a \in S$. If $\overline{V(a)}$ is compact, then a is regular

Proof. Let $\mathcal{F} = \{U : U \text{ is open set containing } a \text{ and } U \subset V\}$. Then $\overline{U(a)} \subset \overline{V(a)}$, for every $U \in \mathcal{F}$. Hence $\mathcal{F}' = \{\overline{U(a)} : U \in \mathcal{F}\}$

is a decending family of closed subset of the compact set $\overline{V(a)}$, and $\bigcap \mathcal{F}' \neq \phi$. Let $x \in \bigcap \mathcal{F}'$. Then $axa \in \overline{U}$ for all $U \in \mathcal{F}$, and hence $axa \in \bigcap \{\overline{U} : U \in \mathcal{F}\} = \{a\}$. Therefore a is a regular element of S.

K. Iseki showed that a semigroup is regular if and only if $RL = R \cap L$ for every right ideal R and every left ideal L [5]. For almost regular semigroups, the following criterion may be useful:

THEOREM 9. A topological semigroup S is almost regular if and only if $\overline{RL} = \overline{R \cap L}$ for every right ideal R and every left ideal L of S.

Proof. Suppose S is an almost regular semigroup. Let R and L be right and left ideal of S respectively. Since $RL \subset R \cap L$, $\overline{RL} \subset \overline{(R \cap L)}$. Let $x \in R \cap L$. Then $x \in \overline{xSx} \subset \overline{RSL} \subset \overline{RL}$, and hence $\overline{RL} = (R \cap L)$. Now let $x \in S$. Since $\{x\} \cup xS$ and $\{x\} \cup Sx$ are right and left ideals of S respectively,

$$x \in \overline{xS^1 \cap S^1 x} = \overline{xS^1 S^1 x} = \overline{\{x^2\} \cup xSx} = \{x^2\} \cup \overline{xSx},$$

where $S^1 = \{1\} \cup S$. Hence $x = x^2$ or $x \in \overline{xSx}$. Therefore S is almost regular.

COROLLARY. Let S be a connected almost regular semigroup. Then every ideal of S is connected.

Proof. Let J be an ideal of the connected almost regular semigroup S. Then $SJ \subset J \subset \overline{JSJ} \subset \overline{SJ}$. Let $y \in J$. Then $y^2S \subset SJS \subset SJ$ and $y^2S \cap Sx \neq \phi$ for every $x \in J$. Since $SJ = \bigcup \{Sx : x \in J\} \cup y^2S$ and Sx and y^2S are connected, SJ is connected. Therefore J is connected.

It is known that if x is a regular element, then the \mathcal{D} -class D_x containing x is regular [1], where \mathcal{D} is the well-known Green's relation. This is true for the case of almost regular.

THEOREM 10. Let x be an element of a semigroup S. Then x is almost regular if and only if D_x is almost regular.

Proof. Let $z \in D_x$. Then x = yx, y = xv, z = ty, y = sz for some $s, t, u, v \in S^1$. Then

$$z = ty = txv \in \overline{txSxv} = \overline{tyuSyuv} = \overline{zuSszuv} = \overline{zuSstyuv} = \overline{zuSstyv} = \overline{zuSstyv} = \overline{zuSstyv} = \overline{zuSsz} = \overline{zSz}.$$

Therefore z is almost regular.

Younki Chae and Yongdo Lim

References

- J. H. Carruth, J. A. Hildebrant, R. J. Koch, The theory of topological semigroups, I, II. Marcel Dekker, New York, 1983.
- 2. Y. Chae, Some structure theorems on topological periodic semigroups, Kyungpook Math. J. 29(1) (1989).
- 3. _____, The structure of topological regular semigroups, Kyungpook Math. J. 31(1) (1991).
- 4. Y. Chae, Y. Lim, Local properities of topological periodic semigroups, to appear in PU. M. A..
- 5. K. Iseki, A characterization of regular semigroups, Proc. Japan Acad., 1956.
- K. D. Magil, S. Subbiah, Green's relations for regular elements of semigroups of endormorphisms, Can. J. Math. 26 (1974).

Department of Mathematics, Kyungpook National University, Taegu 701-701, Korea