• Title/Summary/Keyword: S-Noetherian ring

Search Result 48, Processing Time 0.029 seconds

SOME REMARKS ON S-VALUATION DOMAINS

  • Ali Benhissi;Abdelamir Dabbabi
    • Communications of the Korean Mathematical Society
    • /
    • v.39 no.1
    • /
    • pp.71-77
    • /
    • 2024
  • Let A be a commutative integral domain with identity element and S a multiplicatively closed subset of A. In this paper, we introduce the concept of S-valuation domains as follows. The ring A is said to be an S-valuation domain if for every two ideals I and J of A, there exists s ∈ S such that either sI ⊆ J or sJ ⊆ I. We investigate some basic properties of S-valuation domains. Many examples and counterexamples are provided.

AN ISOMORPHISM OF THE COUSIN COMPLEXES

  • Kim, Dae-Sig
    • Communications of the Korean Mathematical Society
    • /
    • v.12 no.3
    • /
    • pp.491-497
    • /
    • 1997
  • Let $C(F, M)$ and $C(S^{-1}F, S^{-1}M)$ be Cousin complexes for a modula M and a module $S^{-1}M$ over a commutative Noetherian ring with respect to a filtration F and a filtration $S^{-1}F$ respectively. In this paper, it is shown that there is an isomorphism between the Cousin complexes $S^{-1}C(F, M)$ and $C(S^{-1}F, S^{-1}M)$.

  • PDF

SOME REMARKS ON PRIMAL IDEALS

  • Kim, Joong-Ho
    • Bulletin of the Korean Mathematical Society
    • /
    • v.30 no.1
    • /
    • pp.71-77
    • /
    • 1993
  • Every ring considered in the paper will be assumed to be commutative and have a unit element. An ideal A of a ring R will be called primal if the elements of R which are zero divisors modulo A, form an ideal of R, say pp. If A is a primal ideal of R, P is called the adjoint ideal of A. The adjoint ideal of a primal ideal is prime [2]. The definition of primal ideals may also be formulated as follows: An ideal A of a ring R is primal if in the residue class ring R/A the zero divisors form an ideal of R/A. If Q is a primary idel of a ring R then every zero divisor of R/Q is nilpotent; therefore, Q is a primal ideal of R. That a primal ideal need not be primary, is shown by an example in [2]. Let R[X], and R[[X]] denote the polynomial ring and formal power series ring in an indeterminate X over a ring R, respectively. Let S be a multiplicative system in a ring R and S$^{-1}$ R the quotient ring of R. Let Q be a P-primary ideal of a ring R. Then Q[X] is a P[X]-primary ideal of R[X], and S$^{-1}$ Q is a S$^{-1}$ P-primary ideal of a ring S$^{-1}$ R if S.cap.P=.phi., and Q[[X]] is a P[[X]]-primary ideal of R[[X]] if R is Noetherian [1]. We search for analogous results when primary ideals are replaced with primal ideals. To show an ideal A of a ring R to be primal, it sufficies to show that a-b is a zero divisor modulo A whenever a and b are zero divisors modulo A.

  • PDF

TRANSFER PROPERTIES OF GORENSTEIN HOMOLOGICAL DIMENSION WITH RESPECT TO A SEMIDUALIZING MODULE

  • Di, Zhenxing;Yang, Xiaoyan
    • Journal of the Korean Mathematical Society
    • /
    • v.49 no.6
    • /
    • pp.1197-1214
    • /
    • 2012
  • The classes of $G_C$ homological modules over commutative ring, where C is a semidualizing module, extend Holm and J${\varnothing}$gensen's notions of C-Gorenstein homological modules to the non-Noetherian setting and generalize the classical classes of homological modules and the classes of Gorenstein homological modules within this setting. On the other hand, transfer of homological properties along ring homomorphisms is already a classical field of study. Motivated by the ideas mentioned above, in this article we will investigate the transfer properties of C and $G_C$ homological dimension.

Results of Graded Local Cohomology Modules with respect to a Pair of Ideals

  • Dehghani-Zadeh, Fatemeh
    • Kyungpook Mathematical Journal
    • /
    • v.58 no.1
    • /
    • pp.9-17
    • /
    • 2018
  • Let $R ={\oplus}_{n{\in}Z}R_n$ be a graded commutative Noetherian ring and let I be a graded ideal of R and J be an arbitrary ideal. It is shown that the i-th generalized local cohomology module of graded module M with respect to the (I, J), is graded. Also, the asymptotic behaviour of the homogeneous components of $H^i_{I,J}(M)$ is investigated for some i's with a specified property.

NOETHERIAN RINGS OF KRULL DIMENSION 2

  • Shin, Yong-Su
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.3_4
    • /
    • pp.1017-1023
    • /
    • 2010
  • We prove that a maximal ideal M of D[x] has two generators and is of the form where p is an irreducible element in a PID D having infinitely many nonassociate irreducible elements and q(x) is an irreducible non-constant polynomial in D[x]. Moreover, we find how minimal generators of maximal ideals of a polynomial ring D[x] over a DVR D consist of and how many generators those maximal ideals have.

THE MINIMAL FREE RESOLUTION OF CERTAIN DETERMINANTAL IDEA

  • CHOI, EUN-J.;KIM, YOUNG-H.;KO, HYOUNG-J.;WON, SEOUNG-J.
    • Communications of the Korean Mathematical Society
    • /
    • v.20 no.2
    • /
    • pp.275-290
    • /
    • 2005
  • Let $S\;=\;R[\chi_{ij}\mid1\;{\le}\;i\;{\le}\;m,\;1\;{\le}\;j\;{\le}\;n]$ be the polynomial ring over a noetherian commutative ring R and $I_p$ be the determinantal ideal generated by the $p\;\times\;p$ minors of the generic matrix $(\chi_{ij})(1{\le}P{\le}min(m,n))$. We describe a minimal free resolution of $S/I_{p}$, in the case m = n = p + 2 over $\mathbb{Z}$.

ON n-ABSORBING IDEALS AND THE n-KRULL DIMENSION OF A COMMUTATIVE RING

  • Moghimi, Hosein Fazaeli;Naghani, Sadegh Rahimi
    • Journal of the Korean Mathematical Society
    • /
    • v.53 no.6
    • /
    • pp.1225-1236
    • /
    • 2016
  • Let R be a commutative ring with $1{\neq}0$ and n a positive integer. In this article, we introduce the n-Krull dimension of R, denoted $dim_n\;R$, which is the supremum of the lengths of chains of n-absorbing ideals of R. We study the n-Krull dimension in several classes of commutative rings. For example, the n-Krull dimension of an Artinian ring is finite for every positive integer n. In particular, if R is an Artinian ring with k maximal ideals and l(R) is the length of a composition series for R, then $dim_n\;R=l(R)-k$ for some positive integer n. It is proved that a Noetherian domain R is a Dedekind domain if and only if $dim_n\;R=n$ for every positive integer n if and only if $dim_2\;R=2$. It is shown that Krull's (Generalized) Principal Ideal Theorem does not hold in general when prime ideals are replaced by n-absorbing ideals for some n > 1.

THE ANNIHILATING-IDEAL GRAPH OF A RING

  • ALINIAEIFARD, FARID;BEHBOODI, MAHMOOD;LI, YUANLIN
    • Journal of the Korean Mathematical Society
    • /
    • v.52 no.6
    • /
    • pp.1323-1336
    • /
    • 2015
  • Let S be a semigroup with 0 and R be a ring with 1. We extend the definition of the zero-divisor graphs of commutative semigroups to not necessarily commutative semigroups. We define an annihilating-ideal graph of a ring as a special type of zero-divisor graph of a semigroup. We introduce two ways to define the zero-divisor graphs of semigroups. The first definition gives a directed graph ${\Gamma}$(S), and the other definition yields an undirected graph ${\overline{\Gamma}}$(S). It is shown that ${\Gamma}$(S) is not necessarily connected, but ${\overline{\Gamma}}$(S) is always connected and diam$({\overline{\Gamma}}(S)){\leq}3$. For a ring R define a directed graph ${\mathbb{APOG}}(R)$ to be equal to ${\Gamma}({\mathbb{IPO}}(R))$, where ${\mathbb{IPO}}(R)$ is a semigroup consisting of all products of two one-sided ideals of R, and define an undirected graph ${\overline{\mathbb{APOG}}}(R)$ to be equal to ${\overline{\Gamma}}({\mathbb{IPO}}(R))$. We show that R is an Artinian (resp., Noetherian) ring if and only if ${\mathbb{APOG}}(R)$ has DCC (resp., ACC) on some special subset of its vertices. Also, it is shown that ${\overline{\mathbb{APOG}}}(R)$ is a complete graph if and only if either $(D(R))^2=0,R$ is a direct product of two division rings, or R is a local ring with maximal ideal m such that ${\mathbb{IPO}}(R)=\{0,m,m^2,R\}$. Finally, we investigate the diameter and the girth of square matrix rings over commutative rings $M_{n{\times}n}(R)$ where $n{\geq} 2$.