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ABSTRACT. Let § = R[zi;11 <4 < m,1 < j < n] be the poly-
nomial ring over a noetherian commutative ring R and I, be the
determinantal ideal generated by the p X p minors of the generic
matrix (z;;)(1 < p < min(m,n)). We describe a minimal free reso-
lution of S/Ip, in the case m =n = p+ 2 over Z.

1. Introduction

Let R be a noetherian commutative ring with unity, and z;; be vari-
ables with 1 < ¢ <mand 1< j <n. IfweletS = R[z;;] be the
polynomial ring over R, then we have the generic matrix (z;;) and we
may form the determinantal ideal I, of S generated by the p X p minors
of this matrix for 1 < p < min(m,n). For many years there has been
considerable interest in finding minimal free resolutions of S/I,. Eagon
and Hochster [6] proved that I, is perfect (i.e., gradel, =pdsS/I,) and
that if R is a (normal) domain S/, is a (normal) domain and S/I, is R-
free. If R is Cohen-Macaulay then so is S/I,. Therefore free resolutions
of S/I, have the property of so-called depth sensitivity. If p = 1, then
the Koszul complex gives us such a resolution. Eagon and Northcott
[7], Buchsbaum and Rim [5] constructed a minimal free resolution of
S/1, when p = min(m, n), separately. On the other hand, Roberts [12],
Lascoux [11], Pragacz and Weyman [13] constructed the minimal free
resolution (Lascoux’s resolution) of S/I, for any m, n, and p in the case
when R contains the rational number field Q. Their description of the
resolution is based on the representation theory of general linear group.
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If we have a minimal free resolution P of S/I, when R = Z, the ring
of integers, then for any ring R, R ®z P is a minimal free resolution,
since S/I,, is Z-free. There have been some efforts to apply the rep-
resentation theory to the case R = Z. In 1979, Buchsbaum [3] gave
another description of the Eagon-Northcott complex using multilinear
algebra. In the early eighties Akin, Buchsbaum and Weyman developed
characteristic-free representation theory of general linear groups and
constructed a minimal free resolution (the Akin-Buchsbaum-Weyman
complex) of S/I, over Z, in the case p = min(m,n) —1 [1].

Roberts proved that there exists a minimal free resolution of S/I,
over Z if and only if the Betti numbers of S/I, are independent of
characteristic of base field [4]. Using this fact, in the early nineties
Hashimoto and Kurano [10] proved that there exists a minimal free
resolution of S/I, when m = n = p+ 2. Hashimoto extended this result
to the case p = min(m,n) — 2 [9] and proved that there is no minimal
free resolution of S/I, over Z, in the case 2 < p < min(m,n) — 3 [8].
But the construction of the minimal free resolution of S/I,, over Z when
p = min(m,n) — 2 is still open.

In section 2, we review some facts on characteristic free representa-
tion theory of general linear group including Schur modules and Schur
complexes.

In section 3, we define the durfee square complex and give the explicit
characteristic free resolution of an ideal generated by the submaximal
minors of the generic square matrix. The main result consists of finding
the minimal free resolution of the ideal of p x p minors of (p+2) X (p+2)
matrix in a characteristic free case.

2. Preliminaries

This section is devoted to introducing the definitions and quoting
without proofs the basic facts on Schur modules and Schur complexes
from([1, 2]).

We will denote by N the set of natural numbers and by N the set
of sequences of elements of N of finite support. If NP denotes the set of
p-tuples of elements of N, then NP is identified with a subset of N* by
extending any p-tuple (A1,...,A,) by zeroes. Thus N*®° = Up>0 NP,

If A = (A1, Aq,...) is an element of N*°, we define the conjugate A
of \ to be the element )\ = (5\1, X2, .. .) of N where ;\j is the number
of terms of A which are greater than or equal to j. The conjugate A
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of any element A € N°° has the property that M > Ay > -+ and the
clement X is the sequence A rearranged in decreasing order. Thus, if A
is a non-increasing sequence, A = \.

A partition is an element A = (A1, A2, ...) of N such that Ay > X2 >
---. The weight of the partition A, denoted by ||A||, is defined to be the
sum »_ A;. If |]A]| = n, X is said to be a partition of n. The number of
non-zero terms of X is called the length of .

The diagram (or shape) of element A € N*° is the set of ordered pairs
(i,7) in N? with ¢ > 1 and 1 < j < i, and is denoted by A,. We
are adopting the convention that is used with the matrices that the row
index ¢ increases as one goes downward and the column index j increases
from left to right. ~

Using the diagrams, one can see that if A\ is a partition then A =
(5\1, Ao, ... ) is the partition whose jth term 5\j is the number of squares
in the jth column of diagram of A, where we count the columns from
left to right. It is therefore clear that ||A]| = ||A].

If I is a free module over a commutative ring R and XA = (Aq,...,Aq)
is in N*°, we use the following notation:

MF=AMF Qg - @r AF;
S\F = S\,F ®g -~ ®r Sx, F;
D\F =D FQgr---®r DAqF,

where A, S, and D denote the exterior, symmetric and divided powers.

Let A = (A1, A2,-+-,Ag) and p = (p1,p2,- -+, pq) be in N©. We
define p C A if p; < A; for all ¢ > 1, and the skew partition, denoted by
A/, to be (A1 — p1, A2 — pa2, ... ). It is natural to think of a sequence
(0) = (0,0,...).

Suppose now that A/u = (A1, ..., As)/ (41, - . ., ) iS & skew partition.
The shape matrix of A/py is an s x A; matrix A = (a;;) defined by the
rule

T ifp+1<5< A,
@i = {0 otherwise.

Let A = (a;;) be the s x ¢t shape matrix of \/p. Also let a; = 23:1 a;;
and b; = Y .;_,a;;. We are going to define a morphism of functors
d)\/# T Ap — SA~, where Ay = AN Q- QA% S/i =Sb1 ®"'®Sbt, and
A denotes the transpose of A. dy,, is described as follows. Diagonalize
Aa to get

(/\au®_”®/\a1t)®(/\a21®H,®/\au)®_,,®(/\as1®”_®/\ast)



278 Eun J. Choi, Young, H. Kim, Hyoung J. Ko, and Seoung J. Won
which is isomorphic, by rearranging along the columns of A, to
(AR @A) @(AN"2® - @A) Q- @ (A" @ @A),
As a;; € {0,1}, this is equal to
(a1, ® - ®8a,,) ® (S0, @+ ®84,,) ®- - ®(Say, ® - ® Sa,,)
Now use multiplication in S to go to
Sty @ Sp, ® -+ ® Sy, =953

Similarly, one defines a morphism d) jutDa— Ag, where Dy = Dy, ®
@D, and Az =A1 @ @ A%

Let R be a commutative ring, F' and G be free R-modules of ranks m
and n, respectively, and ¢ : F ® G — R be an R-map. We will identify
Hompg(F ® G, R) with Hompg(G, F*) via the canonical isomorphism.
With this identification, we will use the same symbol ¢ to denote the
corresponding map ¢ : G — F*, and write ¢* : F — G* for the map dual
to ¢. We will also denote by c4 the element of F'* ® G* corresponding
to ¢ under the canonical isomorphism:

Homg(F ® G,R) 2 F* @ G*.

DEFINITION 2.1. A(¢) is the (doubly graded) complex (AF* @ DG,
0g), where the differential 9y is the given by the action of ¢y € AF*®SG*
on AF* ® DG. The subcomplex

0-DG—->F*®D_1G— - > ANTF*eDG— - = AF* 50

of A(¢) will be denoted by A!(¢). The component of A(¢) of degree 1,
denoted by Al(¢), is the term AI7'F* @ D;G.

We note that Al(¢) is isomorphic to the complex
0= A"FRDG— = """ MFQDG— - > AN"'F 0
with the isomorphism being induced by A™F @ Al7iF* =2 Am—lHip,

We will use the same notation, A!(¢), to denote either one of these two
isomorphic complexes.
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DEFINITION 2.2. B(¢) is the (doubly graded) complex (DF*®QAG, 64),
where the differential J4 is given by the action of ¢y € DF* ® AG* on
DF* @ AG. The subcomplex

0->AG->F*@AN"IG > - S DF*QAN"IG— - = DiF* =0

of B(¢) will be denoted by B;(¢). The component of B;(¢) of degree 1,
denoted by Bj(¢), is the term D; F* @ AlI7'G.

DeFINITION 2.3. The tensor product of the complexes A™ P(¢) and
A""P(¢*) is again a complex, A" P(¢) @ A"7P(¢*), with its customary
boundary map. We denote by UP(¢) this complex with its degree shifted
by one, i.e., UP(¢) = {U} ()} with

Uiy1(0) = (A™7P(¢) ® A"7P(¢")) for k> 0.

We will denote the boundary map of UP(¢) by 0.

Explicitly, we have

UP,(8) = > AHF ® DoG® NG @ DyF.
at+b=k

To describe the boundary map explicitly, we let {f;},i = 1,...,m and
{9;},7 =1,...,n, be bases of F and G, respectively. Let {p;}, {7;} be
their respective dual bases. Then for 1@ y@u® v € APT2F Q@ D,G ®
AP G & Dy F we have:

Iz QyQuev) =
> olfi @ g){pi2) @ 1Y) @u v+ (—-1)*z @y @ v;(v) ® pi(v)}.

DEFINITION 2.4. Let 1p ¢ FF — F be the identity map. Instead
of writing A'(1g) or B;(1r) we shall denote these complexes by A!(F)
and B;(F), and write dp, dF for their boundary maps. Notice that
AYF) =B{(F)=A""F® D,F.

PROPOSITION 2.5 [1, PROPOSITION 1.5). For any free R-module F
we have:

(1) AY(F) is exact for | > 0, i.e., H;(A'(F)) =0 fori > 0.

(2) H (Bi(F)) =0 fori < (I—1)/2.

(3) Coker(Bi(F) — BT (F)) is free for i < (I — 1)/2.
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UF(¢) was defined to be the sum

Z ANHeE @ DG @ AP G @ D, F.
a+b=k

Frzyuu®uve APTF ® D,G ® A\PTG ® DyF with a + b = k, then
TQuE A§+k(F) and u®y € AP**((G). Thus we may apply the map 9p
to (z®v) and we have Op(z®v)Q@y®u € APT*TFQ Dy 1FRD,G®
AP G 2 APretIE @ DG @ APYPG ® Dy_1 F. But APT*HF @ D,G ®
NPT GQDy_1F isin UT *1(4), so with this identification understood, we
may consider Or(z ®v) ® (y@u) to be an element of UP"(4). Similarly,
u®y € APT*(G), we can apply dg to u®y, and after rearrangement of
terms we may consider (z ®v) ® g (u®y) to be an element of UF(¢).
In the exactly same way, z®v € ]Bg+k(F) and u®y € By, (G), and we

may consider the elements of U ,’;21 (¢). With this conventions in mind,
we make the following definitions:

DEFINITION 2.6. We define the maps
3,€+1(F, G): U,f+1(¢) - UI€+1(¢)

and
5£+1(F> G): UI€+1(¢) - Ulf;21(¢)

as follows. f 2 ®@ y@u®v € APT*F ® D,G @ AP*°G ® D F,

81€+1(FaG)($®y®u®v) =
(:E®’U)®0G(u®y)+(_1)a8F($®U)®(y®u)

‘5Z+1(F’ Gz yQuev) =
(z®v) ®da(u®y) + (1) ér(z @) ® (y @ u).

The notations O(F,G) and §(F,G) underscore the fact that these
maps depend only on the modules F and G; they are completely depen-
dent of the map ¢.
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PROPOSITION 2.7 [1, PROPOSITION 1.8].

&
e aNe. or L (F,G)
UPH ) T UR L (8 U ()

is an exact sequence if p+ k > 0.
(2)
5P+1(F G) SELFG)
UPT (9) "—= U1 () —— UL, (9)

is an exact sequence if p = 0.

DEFINITION 2.8. For p > 1 and k > 0, we define

PTHF,G)

Zl€+1(F’ G) = Coker(U,fH(qS) Ul€+1(¢))

LeEMMA 2.9 [1, LEMMA 1.12]). The diagram

O(F,G)
ULt () — UL¥3(9)
6(F,G)l lé(F,G)
A(F,Q)

UR i (9) —= UL ()

is anticommutative.

By the above lemma, we see that the maps

ak+l(F G): U1§+1(¢) - U;f“(‘b)

induce unique maps, which we will denote by
& (F,G): ZL (F,G) — ZIY(F,G).

DEFINITION 2.10. We define X},
map 8k+1(F, G).

281

(1, F,G) to be the kernel of the
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PRrROPOSITION 2.11 [1, PROPOSITION 1.14]. For p > 1, the sequence
ZP 5 (F,G) — 28, (F,G) — ZPY(F,G)
is exact. We therefore have an exact sequence
0— XP . (1,F,G)— ZF, (F,G) —» X" (1,F,G) — 0

for all p > 0. It follows from this that X} (1, F,G) is universally free
forp = 2.

LEMMA 2.12 [1, LEMMA 1.15]. The following diagrams are commu-
tative :

Ta(FO)

k+1( ) _
U/f+1(¢) Up+1(¢) Ulf+1(¢) - U/f+2 (¢)
Bg(F,G)l la};(F,G) a;(F,G)l la;(F,G)
% (F,G) o? )
vE(g) D yprL ) Up(e) 221 g)

DEFINITION 2.13. The complex {Z}_, (F,G), 87} will be denoted by
Zx(¢).

Lemma 2.9 and 2.12 show us that the map O(F, G) : ZP(¢) — ZP+1(¢)
(sending Zp ,(F,G) to ZET1(F, G)) is a map of complexes, and thus the
map 85 : ZL | (F,G) — Z;(F,G) induces a map 85 : X;,,(1,F,G) —

X (1, F,G).

DEFINITION 2.14. The complexes {X} (L, F, G),@f} will be de-
noted by XP(1, ¢).
Clearly, the complex XP(1, ¢) is the kernel of the map of complexes

O(F,G) : Z°(9) — Z"*(9).

Let F and G be free R-modules of ranks m and n, where m > n,
respectively, and let p be a positive integer less than or equal to n. Let
(p") denote the partition
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We let [, denote the ideal in S(F' ® G) generated by APF @ APG, and I}
denotes the rth power of I,. Because p < rank G, we have a canonical
injection of the tensor product of Schur functors Ly F' ® L(pryG — I}
(by the standard basis theorem). Consequently, we have a map

mh(r,F,G): N(F®G)® L(pr)F ® L(n,G = NN F®G)® I}
which is the composition of the maps
N (F®G)® LipnF ® LG

EANTFQG)®(FOG)® LipryF @ Lpn G
BN (FRe) T,
where a is obtained by diagonalizing AF(F ® G) and 3 is obtained by
multiplying the image of L,r)F ® L(,ryG in I} by F ® G in S(F ® G).
DEFINITION 2.15. For k& > 0, we denote the kernel of the map
7]k(7“~, Fﬂ G) by Yk-f-l(rv F7 G)

The followings are directly induced from the definition
Ylp('r, F, G) = L(pr)F & L(pr)G

and
0= Y (rnF,G) =Y/ (nF,G)@F®G—~ I}

1s exact.

PRroPOSITION 2.16 [1, PrROPOSITION 3.2]. For each k > 2, there is
an exact sequence

0—=Y! (rnF,G) =Y (r,F,G)®(FRG) = Y, (r,F,G)®S:(F®G).
DEFINITION 2.17. The complex {Y]7,,(r, F, G), 8} } will be denoted
by Y?(r,¢). When ¢ is the generic map, this complex will be denoted

by Y(r, F, G).

THEOREM 2.18 [1, THEOREM 3.4]. Let F and G be free R-modules
of ranks m and n, where m > n. Let ¢ : F ® G — R be a map and
suppose that for cach j = 1,...,n the ideal I;(¢) generated by the
minors of ¢ of order j has grade > (n+1 — j)(m —n) + 1. Let p be
a positive integer where 0 < p < n. Then Yp(r, @) is a free resolution
of I}(¢) and this resolution can be augmented to give the resolution of

R/I7 ().
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3. Minimal free resolution

Let R be a commutative noetherian ring, and let F' and G be free
R-modules of ranks m and n, where p < min(m,n). Then we have the
following map

& N(F ®G") ® Litpar—1yr) F ® L(pyr_1)n)G”
— A F © G*) ® Sriprr—1y41(F ® G7).

The above map is the composition

NAE ® G*) ® Ligpir—1ynF & Ligpr—1)n) G
1B AR (F @ G*) ® Spipyr—1)(F ® G*)
s Akt (F®G*)® Sr(p+r—l)+1 (FeG"),

where « is the canonical embedding
Lip+r-1n F ® Liptr-1)1)G™ = Srpir—1)(F @ G7)

and o is the Koszul map.

DEFINITION 3.1. For k > 0, we denote the kernel of the map &2(r, F, G)
by X7, . (r, F,G).

The followings are directly induced from the definition
X} (r, F,G) = Lipsr-1)n F ® Lpyr—1)) G
and
0— X5(r,F,G) - XP(r,F,G)® F @ G* — S2(F ® G*)

is exact.

PROPOSITION 3.2. For each k > 2, there is an exact sequence
0— X,’c’+1(r, F,G) — X2(r,F,G)®(F®G*) — Xi_,(r, F,G)®@S2(F®G™).
PrOOF. To obtain the map

% : X2 (r,F,G) - X}(r,F,G)® (F ® G")
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we observe that the diagonal map
AN(FRG) - N F®G)® (Fe G

tensored with the identity on L,y 1)r F®L(p4r—1)-G* induces a unique
map from X?_ (r, F,G) to X} (r, F,G). The map

XP(r,F,G)® (F ®G*) — XI_,(r, F,G) ® Sy(F ® G*)

is just the composition

XP(r,F,G)® (F&G*) “8'X?_(r,F,G)® (F®G*) @ (F&G")
BEXP_ (r,F,G)® S2(F ® G),

where g is multiplication in S(F ® G*). The exactness is a consequence
of the acyclicity of the Koszul complex A(F ® G*) ® S(F ® G*). O

If : F®G* — R is a map, then we obtain a map
853( : XE L (r F,G) — X} (r, F,G)

k > 1 which is the composition

XP (rF,.G) ZX0(r F,G) @ (F & G*)

B2XP(r, F,G)® R = X"(r, F,G).

It is easy to check that ('94)5( o@jf = 0, so we obtain a complex {X?(r, F, G),
o0x}.
¢

DEFINITION 3.3. The complex {X} ,(r, F, G),@jf} will be denoted
by X(r, ). When ¢ is the generic map, this complex will be denoted by
{X(r, F,G)} and called Durfee squre r complex.

Let R be a commutative noetherian ring, and let F and G be free
R-modules of ranks p + 2. We will assume that ¢ is the generic map
and that F' and G are fixed. Thus we will write UP, Z? and X(1) for
UP(g), ZP(¢), and X(1,¢), and we will also write Z ,, X} (1), for
Zp (F,G)and X7 (1, F,G).
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PROPOSITION 3.4 [1, PROPOSITION 3.5]. We can obtain followings
when rankF = rankG = p+ 2.

(a) Hy(UPTY) =0 fori > 3.

(b) XPT2(1) 22 ZP*2 js a resolution of I;2(®).

(c) H;(XP+1(1)) = H,(ZPH1) for i > 2.
(d) Hy(XP+(1)) =0 for i > 3.
(e) We have the exact sequence

0 — Ha(ZPT?) = Lp12(9) — Ha(UPTY) — Ha(ZP) — 0.
(f) H3(XP+(1)) = I24,(¢) and Ha(XP*1(1)) = 0.

PROPOSITION 3.5. We can obtain followings when rankF = rankG =

(a) H;(UP) =0 fori > 3.

(b) Hy(XP(1)) = H;(ZP) fori > 4

(c) Hy(XP(1)) = 0.

(d) Ha(x?(1)) = 0.

(e) Ho(XP(1)) = I2,.(@).

(f) There exists an inclusion map from IZ 5(¢) to H3(XP(1)).

ProoF. First we will prove (a). we use the fact that U? is the tensor
product of two complexes:
(APY2F ® DyG — APYIF @ G — APF)
® (NP*2G ® DoF — NPYIG @ F — APG)
and both complexes are acyclic [4]. By acyclic assembly lemma [2], U? is
acyclic. Since the indexing of our complex U?P starts with 1, it accounts

for the condition 7 > 3.
We recall the two exact sequences in Section 2:

p+1 P P
0— Z; —»Uk+1—>Z

k41 — 0

0— Xl€+1(1) - Z1€+1 - X1€+1(1) — 0.
In fact the above sequences are exact sequences of complexes

(1) 0—2ZPH S UP 7P -0
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(2) 0— XP(1) = ZP — XPT1(1) = 0
provided we keep in mind the dimension shifts. We use the sequence (2)
to prove (b). From the associated homology sequence we get
H;(XP(1)) = H;(ZP) fori > 4.
To prove (¢) we use the sequence (2). From the associated homology
sequence of complex we can obtain the exact sequence
H,(XPH(1)) — Hy(XP(1)) — Ha(27) — Hy (X (1)) — Hy(XP(1).

We already know H;(XPT1(1)) = I, 41(¢) and H1(XP(1)) = I,(¢). But
In+1(¢) C I,(¢) which means H(ZP) = 0. Since Ho(XP+1(1)) = 0,
Hy(XP(1)) = 0. To prove (d) we use the sequence (1). From the associ-
ated homology sequences of complex we can obtain the exact sequence

Hy(UP) — Hy(ZP) — Ha(ZP*) — H(UP).
Since Hy(UP) = H3(UP) = 0 we can say Hy(ZP) = Ho(ZP*!). From the
fact Hy(ZPT1) = 0, we get H4(ZP) = 0. From the associated homology
sequence of (2), we get

Hy(XPHH(1)) — Ha(XP(1)) — Ha(ZP).

Since Hy(XPT1(1)) = 0 = Hy(ZP), Hy(XP(1)) = 0. To prove (e) we use
sequence (1). From the associated homology sequence of the complex,
we get

H5(UP) — Hs(ZP) — H3(ZP*') — Hy(UP).
Since Hs(UP) = 0 = Hy(UP), we get H5(ZP) = H3(ZPT™'). From the
associated homology sequence of (2), we get

Hs(XP*1(1)) — Hs5(XP(1)) — Hs(ZP) — Hy(XP*(1)).
Since Hs(XPT1(1)) = 0 = Hy(XPT1(1)), H5(XP(1)) = H5(ZP). Also we
already know H3(ZP+') = H3(XPt1(1)) and H3(XPT1(1)) = I2,5(¢).
Hence Hs(XP(1)) = I2,,(¢). To prove (f) we use sequence (2). From
the associated homology sequence of the complex, we get
Hy(ZP) — H3(XP1(1)) — H3(XP(1)).

Since H4(ZP) = 0 and H3(XP*1(1)) = IZ,5(¢), there is an inclusion map
from I2,,(¢) to H3(XP(1)). |

We have the Durfee square 1 complex XP(1) which may be a half part
of the resolution of the p x p minors when rankF = rankG =p+ 2 as
followings:

0 — x2(1) 2% xr(1) 28 xp(1) 2L xp(1) ZL xP(1).
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DEFINITION 3.6. The Durfee square 2 complex XP(2) is defined to be
the dual complex of above Durfee square 1 complex. That is, XP(2) =
{X2(1)*,0(1)*}, where

Xp(2) = Xg_,. (1)

for k > 1, and 9(2) is the dual boundary map of X(1).

ProrosiTION 3.7. There exists a map
P10 X7 (2) — XE(1)

and
e+ X5(2) — XE(D).

PROOF. We know by Proposition 3.5 Hs(XP(1)) = I2, ,(¢) and there
exist the inclusion map from I2, ,(¢) to H3(XP(1)). Since X[(2) =
XP(1)*, we have the inclusion map ¢; : X7(2) — X%(1). Thus there
is the dual map 97 : XJ(1)* — X7(2)*. Since X§(1)* = X%(2) and
X?(2)* = XP(1), we define the map 1 by ¥7. O

DEFINITION 3.8. The X7 (3) is defined to be the dual of cokernel of
the map 8% (1).

REMARK. Since the cokernel of two universally free modules are uni-
versally free, X7 (3) is universally free[4].

Now, we show that the complex XP is a minimal free resolution of
determinantal ideal I,(¢):

X1(3)

|

XP(2) — X7(2) — XL(2) — X%(2) — X7(2

L

— X(1) — X5 (1) — X7(1)

THEOREM 3.9. The complex XP is a minimal free resolution of Ip(¢).

PROOF. If we augment the complex XP by mapping X7 (1) = APF ®
APG to R, what we want to show is that this augmented complex is
a resolution of R/I,(¢). The augmented complex has length 10, so by
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the acyclicity lemma it suffices to localize at primes of height less than
10. (Because of universality, we may assume that R is Cohen-Macaulay
so that we need not distinguish between height and grade of ideals.)
However, I,(¢) is of height 8, so that under localization by such a prime,
I,(¢) blows up. It therefore suffices to prove acyclicity after inverting a
p X p minor of ¢ and we may assume that ¢ =id+¢' : HG' — HOF'™
where rank H = p, rank F/ = 2, rank G’ = 2, and ¢/ : G’ — F'" is
generic. From Proposition 3.5 (a) we see that it is enough to show that
Hy(UP) = Ipy1(9)/Ip42(¢) since the map I,41(¢) — Ho(UP) will be
easily seen to be the canonical surjection [1]. By the usual argument
reducing UP modulo homotopy equivalance, we may assume that

U = (NF @D:G - F oG — R ® (NG @DF - F oG — R)

where Ip+1(¢) = Il((]y) = (Xl,XQ,X3,X4), and Xl,XQ,Xg,X4 is a
regular sequence. A simple argument shows that

0 —> Hy(UP) — > R/L(¢) 8 F @ G’ “2% R/L(¢') & R

is exact. But 1®¢’ is the zero map and it is easy to see F/ @ G’ /I1(¢') =
I5(¢"). From the associated homology sequence of complex we can obtain
the exact sequence

Hg(Up) - H3(ZP) — Hl(Zp+1) - H2([Up) ad HQ(ZP)

Since H3(UP) = 0 = Ha(ZP) and Hy(Z"*') = [11(8)/Ipya(9) =
Hy(UP), H3(ZP) = 0. From the associated homology sequence of com-
plex we can obtain the exact sequence

Hy(27) — H3(XP*(1)) — H3(XP(1)) — Hs(ZP).

We already know that Hz(XPT'(1)) = IZ,,(4) and H3(ZP) = 0 =
Hy(ZP). Therefore H3(XP(1)) = IZ,,(¢). This proves acyclicity of our
complex XP,

Now we need to show the minimality of the complex. Since we are
not looking over a local, but over a graded ring, by the minimality we
mean that the coefficients of the boundary maps of X? are in the ideal of
S(F ®G) generated by F®@G. We have already seen that the complexes
XP(1) and XP(2) are linear, so the only maps that need to be examined
are the maps ¥, (1) and ¥« (2). To do this, recall that all our modules,
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complexes, etc., are graded, and so, therefore, is the homology of all
of these complexes. We see that H3(ZP) = 0 in the degrees less than
p (since Ip41(¢) has its first non-zero component in degree p + 1, and
the map H3(ZP) — I,11(¢) is of degree one). This permits us to define
¥1(1) as a map of degree p, and the degrees of the other are therefore

also seen to be p. (]
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