• Title/Summary/Keyword: Riemannian metric

Search Result 153, Processing Time 0.022 seconds

HARMONIC HOMOMORPHISMS BETWEEN TWO LIE GROUPS

  • Son, Heui-Sang;Kim, Hyun Woong;Park, Joon-Sik
    • Honam Mathematical Journal
    • /
    • v.38 no.1
    • /
    • pp.1-8
    • /
    • 2016
  • In this paper, we get a complete condition for a group homomorphism of a compact Lie group with an arbitrarily given left invariant Riemannian metric into another Lie group with a left invariant metric to be a harmonic map, and then obtain a necessary and sufficient condition for a group homomorphism of (SU(2), g) with a left invariant metric g into the Heisenberg group (H, $h_0$) to be a harmonic map.

CRITICAL POINT METRICS OF THE TOTAL SCALAR CURVATURE

  • Chang, Jeong-Wook;Hwang, Seung-Su;Yun, Gab-Jin
    • Bulletin of the Korean Mathematical Society
    • /
    • v.49 no.3
    • /
    • pp.655-667
    • /
    • 2012
  • In this paper, we deal with a critical point metric of the total scalar curvature on a compact manifold $M$. We prove that if the critical point metric has parallel Ricci tensor, then the manifold is isometric to a standard sphere. Moreover, we show that if an $n$-dimensional Riemannian manifold is a warped product, or has harmonic curvature with non-parallel Ricci tensor, then it cannot be a critical point metric.

YANG-MILLS CONNECTIONS ON A COMPACT CONNECTED SEMISIMPLE LIE GROUP

  • Park, Joon-Sik
    • East Asian mathematical journal
    • /
    • v.26 no.1
    • /
    • pp.75-79
    • /
    • 2010
  • Let G be a compact connected semisimple Lie group, g the Lie algebra of G, g the canonical metric (the biinvariant Riemannian metric which is induced from the Killing form of g), and $\nabla$ be the Levi-Civita connection for the metric g. Then, we get the fact that the Levi-Civita connection $\nabla$ in the tangent bundle TG over (G, g) is a Yang-Mills connection.

Scalar curvatures of invariant metrics

  • Park, Joon-Sik;Oh, Won-Tae
    • Journal of the Korean Mathematical Society
    • /
    • v.31 no.4
    • /
    • pp.629-632
    • /
    • 1994
  • Let (M, g) be a Riemannian manifold. The relation between a (pointwise) conformal metric of the metric g and the scalar curvature of this new metrics is investigated by Kazdan, Warner and Schoen (cf. [1, 4]).

  • PDF

LIGHTLIKE HYPERSURFACES OF AN INDEFINITE TRANS-SASAKIAN MANIFOLD WITH AN (ℓ, m)-TYPE CONNECTION

  • Jin, Dae Ho
    • Journal of the Korean Mathematical Society
    • /
    • v.55 no.5
    • /
    • pp.1075-1089
    • /
    • 2018
  • We define a new connection on semi-Riemannian manifolds, which is a non-symmetric and non-metric connection. We say that this connection is an (${\ell}$, m)-type connection. Semi-symmetric non-metric connection and non-metric ${\phi}$-symmetric connection are two important examples of this connection such that (${\ell}$, m) = (1, 0) and (${\ell}$, m) = (0, 1), respectively. In this paper, we study lightlike hypersurfaces of an indefinite trans-Sasakian manifold with an (${\ell}$, m)-type connection.

LIGHTLIKE HYPERSURFACES OF AN INDEFINITE KAEHLER MANIFOLD WITH A SYMMETRIC METRIC CONNECTION OF TYPE (ℓ, m)

  • Jin, Dae Ho
    • Bulletin of the Korean Mathematical Society
    • /
    • v.53 no.4
    • /
    • pp.1171-1184
    • /
    • 2016
  • We define a new connection on semi-Riemannian manifolds, which is called a symmetric connection of type (${\ell}$, m). Semi-symmetric connection and quarter-symmetric connection are two examples of this connection such that $({\ell},m)=(1,0)$ and $({\ell},m)=(0,1)$ respectively. In this paper, we study lightlike hypersurfaces of an indefinite Kaehler manifold endowed with a symmetric metric connection of type (${\ell}$, m).

LIGHTLIKE HYPERSURFACES OF AN INDEFINITE GENERALIZED SASAKIAN SPACE FORM WITH A SYMMETRIC METRIC CONNECTION OF TYPE (ℓ, m)

  • Jin, Dae Ho
    • Communications of the Korean Mathematical Society
    • /
    • v.31 no.3
    • /
    • pp.613-624
    • /
    • 2016
  • We define a new connection on a semi-Riemannian manifold. Its notion contains two well known notions; (1) semi-symmetric connection and (2) quarter-symmetric connection. In this paper, we study the geometry of lightlike hypersurfaces of an indefinite generalized Sasakian space form with a symmetric metric connection of type (${\ell}$, m).

WEAKLY BERWALD SPACE WITH A SPECIAL (α, β)-METRIC

  • PRADEEP KUMAR;AJAYKUMAR AR
    • Honam Mathematical Journal
    • /
    • v.45 no.3
    • /
    • pp.491-502
    • /
    • 2023
  • As a generalization of Berwald spaces, we have the ideas of Douglas spaces and Landsberg spaces. S. Bacso defined a weakly-Berwald space as another generalization of Berwald spaces. In 1972, Matsumoto proposed the (α, β) metric, which is a Finsler metric derived from a Riemannian metric α and a differential 1-form β. In this paper, we investigated an important class of (α, β)-metrics of the form $F={\mu}_1\alpha+{\mu}_2\beta+{\mu}_3\frac{\beta^2}{\alpha}$, which is recognized as a special form of the first approximate Matsumoto metric on an n-dimensional manifold, and we obtain the criteria for such metrics to be weakly-Berwald metrics. A Finsler space with a special (α, β)-metric is a weakly Berwald space if and only if Bmm is a 1-form. We have shown that under certain geometric and algebraic circumstances, it transforms into a weakly Berwald space.