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LIGHTLIKE HYPERSURFACES OF AN INDEFINITE

KAEHLER MANIFOLD WITH A SYMMETRIC METRIC

CONNECTION OF TYPE (ℓ, m)

Dae Ho Jin

Abstract. We define a new connection on semi-Riemannian manifolds,
which is called a symmetric connection of type (ℓ, m). Semi-symmetric
connection and quarter-symmetric connection are two examples of this
connection such that (ℓ, m) = (1, 0) and (ℓ, m) = (0, 1) respectively.
In this paper, we study lightlike hypersurfaces of an indefinite Kaehler
manifold endowed with a symmetric metric connection of type (ℓ, m).

1. Introduction

A linear connection ∇̄ on a semi-Riemannian manifold (M̄, ḡ) is said to be
a symmetric connection of type (ℓ, m) if its torsion tensor T̄ satisfies

(1.1) T̄ (X,Y ) = ℓ{θ(Y )X − θ(X)Y }+m{θ(Y )JX − θ(X)JY },

for any vector fields X and Y on M̄ , where ℓ and m are smooth functions, J is
a tensor field of type (1, 1) and θ is a 1-form associated with a non-vanishing
smooth non-null unit vector field ζ, which is called the characteristic vector

field of M̄ , by θ(X) = ḡ(X, ζ). Moreover, if ∇̄ satisfies ∇̄ḡ = 0, then it is called
a symmetric metric connection of type (ℓ, m).

Two special cases are important for both the mathematical study and the
applications to physics: (1) In case (ℓ,m) = (1, 0): ∇̄ is called a semi-symmetric

metric connection. The notion of semi-symmetric metric connection on a Rie-
mannian manifold was introduced by H. A. Hayden [7] and later studied by
several authors [15]. (2) In case (ℓ,m) = (0, 1): ∇̄ is called a quarter-symmetric

metric connection. The notion of the quarter-symmetric metric connection was
introduced by K. Yano-T. Imai [16], and since then it have been studied by S.
C. Rastogi [13, 14], D. Kamilya-U. C. De [9], R. S. Mishra-S. N. Pandey [10],
S. Golab [6], N. Pušić [12], J. Nikić-N. Pušić [11] and some others.
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The theory of lightlike submanifolds is an important topic of research in
differential geometry due to its application in mathematical physics, especially
in the general relativity. The study of such notion was initiated by K. L.
Duggal-A. Bejancu [3] and later studied by many authors [4, 5]. The lightlike
version of Riemannian manifolds with semi-symmetric or quarter-symmetric
metric connections have been studied by some authors.

In this paper, we study the geometry of lightlike hypersurfaces of an indefi-
nite Kaehler manifold (M̄, ḡ, J) endowed with a symmetric metric connection
of type (ℓ, m), in which the tensor field J , defined by (1.1), is identical with
the indefinite almost complex structure tensor J of M̄ .

2. Lightlike hypersurfaces

Let M̄ = (M̄, ḡ, J) be an even dimensional indefinite Kaeler manifold with a
symmetric metric connection ∇̄ of type (ℓ, m), where ḡ is a semi-Riemannian
metric on M̄ and J is an indefinite almost complex structure such that

(2.1) J2 = −I, ḡ(JX, JY ) = ḡ(X,Y ), (∇̄XJ)Y = 0

for any vector fields X and Y of M̄ .
Let (M, g) be a lightlike hypersurface of M̄ . It is known that the normal

bundle TM⊥ of M is a vector subbundle of the tangent bundle TM , of rank
1. A complementary vector bundle S(TM) of TM⊥ in TM is non-degenerate
distribution on M , which is called a screen distribution on M , such that

(2.2) TM = TM⊥ ⊕orth S(TM),

where ⊕orth denotes the orthogonal direct sum. We denote such a lightlike
hypersurface by M = (M, g, S(TM)). Denote by F (M) the algebra of smooth
functions on M and by Γ(E) the F (M) module of smooth sections of any
vector bundle E over M . Also denote by (2.1)i the i-th equation of the three
equations in (2.1). We use same notations for any others. For any null section
ξ of TM⊥ on a coordinate neighborhood U ⊂ M , there exists a unique null
section N of a unique vector bundle tr(TM) in S(TM)⊥ [3] satisfying

ḡ(ξ,N) = 1, ḡ(N,N) = ḡ(N,X) = 0, ∀X ∈ Γ(S(TM)).

We call tr(TM) and N the transversal vector bundle and the null transversal

vector field of M with respect to the screen distribution S(TM) respectively.
Then the tangent bundle TM̄ of M̄ is decomposed as follow:

(2.3) TM̄ = TM ⊕ tr(TM) = {TM⊥ ⊕ tr(TM)} ⊕orth S(TM).

In the following, let X ,Y ,Z and W be the smooth vector fields on M , unless
otherwise specified. Let P be the projection morphism of TM on S(TM) with
respect to the decomposition (2.2). From (2.2) and (2.3), the local Gauss and
Weingartan formulas of M and S(TM) are given by

∇̄XY = ∇XY +B(X,Y )N,(2.4)

∇̄XN = −A
N
X + τ(X)N ;(2.5)
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∇XPY = ∇∗

XPY + C(X,PY )ξ,(2.6)

∇Xξ = −A∗

ξX − τ(X)ξ,(2.7)

respectively, where ∇ and ∇∗ are the induced connections on TM and S(TM)
respectively, B and C are the local second fundamental forms on TM and
S(TM) respectively, A

N
and A∗

ξ are the shape operators on TM and S(TM)

respectively and τ is a 1-form. From the fact that B(X,Y ) = ḡ(∇̄XY, ξ), we
know that B is independent of the choice of S(TM) and satisfies

(2.8) B(X, ξ) = 0.

The above second fundamental forms are related to their shape operators by

g(A∗

ξX,Y ) = B(X,Y ), ḡ(A∗

ξX,N) = 0,(2.9)

g(A
N
X,PY ) = C(X,PY ), ḡ(A

N
X,N) = 0.(2.10)

In case B = 0, i.e., A∗

ξ = 0, we say that M is totally geodesic. In case C = 0,

i.e., A
N
= 0, we say that S(TM) is totally geodesic in M .

The induced connection ∇ on M is not a metric one and satisfies

(2.11) (∇Xg)(Y, Z) = B(X,Y )η(Z) +B(X,Z)η(Y ),

where η is a 1-form on TM such that

η(X) = ḡ(X,N).

3. Symmetric metric connection of type (ℓ, m)

Due to [3, Section 6.2], for a lightlike hypersurfaceM of an indefinite Kaehler
manifold M̄ , J(TM⊥) and J(tr(TM)) are subbundles of S(TM), of rank 1,
such that J(TM⊥)∩J(tr(TM)) = {0}. It follow that J(TM⊥)⊕J(tr(TM)) is
a subbundle of S(TM), of rank 2. Thus there exist two non-degenerate almost
complex distributions Do and D on M with respect to the indefinite almost
complex structure J , i.e., J(Do) = Do and J(D) = D, such that

S(TM) = J(TM⊥)⊕ J(tr(TM))⊕orth Do,

D = {TM⊥ ⊕orth J(TM⊥)} ⊕orth Do.

In this case, the decomposition (2.2) of TM is reduced to

(3.1) TM = D ⊕ J(tr(TM)).

Consider two null vector fields U and V and two 1-forms u and v such that

(3.2) U = −JN, V = −Jξ, u(X) = g(X,V ), v(X) = g(X,U).

Denote by S the projection morphism of TM on D. Any vector field X of M
is expressed as X = SX + u(X)U . Applying J to this form, we have

(3.3) JX = FX + u(X)N,
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where F is a tensor field of type (1, 1) globally defined on M by F = J ◦ S.
Applying J to (3.3) and using (2.1) and (3.2), we have

(3.4) F 2X = −X + u(X)U.

As u(U) = 1 and FU = 0, the set (F, u, U) defines an indefinite almost contact
structure on M and F is called the structure tensor field of M .

Applying ∇̄X to (3.2) and (3.3) by turns, and using (2.1), (2.4), (2.5), (2.7),
(2.9), (2.10), (2.11), (3.2) and (3.3), we have

B(X,U) = C(X,V ) ≡ σ(X),(3.5)

∇XU = F (A
N
X) + τ(X)U,(3.6)

∇XV = F (A∗

ξX)− τ(X)V,(3.7)

(∇XF )(Y ) = u(Y )A
N
X −B(X,Y )U,(3.8)

(∇Xu)(Y ) = −u(Y )τ(X) −B(X,FY ),(3.9)

(∇Xv)(Y ) = v(Y )τ(X)− g(A
N
X,FY ).(3.10)

Let M̄ be an indefinite Kaehler manifold with a symmetric metric connection
of type (ℓ, m). Substituting (2.4) and (3.3) into (1.1) and then, comparing the
tangent and transversal components of the resulting equation, we get

T (X,Y ) = ℓ{θ(Y )X − θ(X)Y }+m{θ(Y )FX − θ(X)FY },(3.11)

B(X,Y )−B(Y,X) = m{θ(Y )u(X)− θ(X)u(Y )},(3.12)

where T is the torsion tensor with respect to the induced connection ∇.
In the entire discussion of this article, we shall assume that the characteristic

vector field ζ of M̄ to be unit spacelike, without loss of generality. From the
decomposition (2.3), ζ is decomposed as

ζ = ω + αξ + βN,

where ω is a vector field on S(TM) and α and β are smooth functions given by
α = θ(N) and β = θ(ξ). Replacing X by ξ to (3.12) and using (2.8), we have

(3.13) B(ξ,X) = −mβu(X).

From this, (2.10) and the fact that S(TM) is non-degenerate, we have

(3.14) A∗

ξξ = −mβV.

Theorem 3.1. Let M be a lightlike hypersurface of an indefinite Kaehler man-

ifold M̄ with a symmetric metric connection of type (ℓ, m). Then the second

fundamental form B of M is symmetric if and only if m = 0.

Proof. If m = 0, then, from (3.12), we see that B is symmetric. Conversely, if
B is symmetric, then taking X = ξ, Y = U and X = V, Y = U to (3.12) by
turns, we obtain mβ = 0 and mθ(V ) = 0 respectively. As u(ω) = θ(V ) and
mθ(V ) = 0, we get mu(ω) = 0. Taking X = ω and Y = U to (3.12), we get
mθ(ω) = mg(ω, ω) = 0. Therefore, m = mḡ(ζ, ζ) = m{g(ω, ω)+2αβ} = 0. �
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Denote by R̄, R and R∗ the curvature tensors of the symmetric metric con-
nection ∇̄ of type (ℓ,m) on M̄ , the induced connection∇ onM and the induced
connection ∇∗ on S(TM) respectively. Using the Gauss-Weingarten formulas
and (3.11), we obtain the Gauss equations for M and S(TM) such that

R̄(X,Y )Z = R(X,Y )Z +B(X,Z)A
N
Y −B(Y, Z)A

N
X(3.15)

+ {(∇XB)(Y, Z)− (∇Y B)(X,Z)

+ τ(X)B(Y, Z)− τ(Y )B(X,Z)

− ℓ[θ(X)B(Y, Z)− θ(Y )B(X,Z)]

− m[θ(X)B(FY,Z)− θ(Y )B(FX,Z)]}N,

R(X,Y )PZ = R∗(X,Y )PZ + C(X,PZ)A∗

ξY − C(Y, PZ)A∗

ξX(3.16)

+ {(∇XC)(Y, PZ)− (∇Y C)(X,PZ)

− τ(X)C(Y, PZ) + τ(Y )C(X,PZ)

− ℓ[θ(X)C(Y, PZ)− θ(Y )C(X,PZ)]

− m[θ(X)C(FY, PZ)− θ(Y )C(FX,PZ)]}ξ.

The induced Ricci type tensor R(0, 2) of M is defined by

R(0, 2)(X,Y ) = trace{Z → R(Z,X)Y }.

In general, R(0, 2) is not symmetric. It is well known that R(0, 2) is symmetric
if and only if the 1-form τ is closed, i.e., dτ = 0 on TM [3, 4]. Therefore
it has no geometric or physical meaning similar to the Ricci curvature of the
non-degenerate submanifolds and it is just a tensor quantity. Hence we need
the following definition: R(0, 2) is called the induced Ricci tensor [4] of M if it
is symmetric. The symmetric R(0, 2) tensor will be denoted by Ric.

Consider the induced quasi-orthonormal frame field {ξ;Wa} on M such that
Rad(TM) = Span{ξ} and S(TM) = Span{Wa}. Let dim M̄ = n + 2 and
ǫa = g(Wa,Wa). Using this quasi-orthonormal frame field, we obtain

(3.17) R(0, 2)(X,Y ) =

n∑

a=1

ǫa g(R(Wa, X)Y, Wa) + ḡ(R(ξ,X)Y, N).

4. Indefinite complex space forms

An indefinite complex space form, denoted by M̄(c), is a connected indefinite
Kaehler manifold of constant holomorphic sectional curvature c such that

R̄(X,Y )Z =
c

4
{ḡ(Y, Z)X − ḡ(X,Z)Y + ḡ(JY, Z)JX(4.1)

− ḡ(JX,Z)JY + 2ḡ(X, JY )JZ}

for any vector fields X, Y and Z of M̄ .
Comparing the tangential and transversal components of the two equations

(3.15) and (4.1), and using (3.3), we get

R(X,Y )Z =
c

4
{g(Y, Z)X − g(X,Z)Y + ḡ(JY, Z)FX(4.2)
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− ḡ(JX,Z)FY + 2ḡ(X, JY )FZ}

− B(X,Z)A
N
Y +B(Y, Z)A

N
X,

(∇XB)(Y, Z)− (∇Y B)(X,Z)(4.3)

+ τ(X)B(Y, Z)− τ(Y )B(X,Z)

− ℓ{θ(X)B(Y, Z)− θ(Y )B(X,Z)}

− m{θ(X)B(FY,Z)− θ(Y )B(FX,Z)}

=
c

4
{u(X)ḡ(JY, Z)− u(Y )ḡ(JX,Z) + 2u(Z)ḡ(X, JY )}.

Taking the scalar product with N to (3.16) and then, substituting (4.2) into
the resulting equation and using (2.10)2, we obtain

(∇XC)(Y, PZ)− (∇Y C)(X,PZ)(4.4)

− τ(X)C(Y, PZ) + τ(Y )C(X,PZ)

− ℓ{θ(X)C(Y, PZ)− θ(Y )C(X,PZ)}

− m{θ(X)C(FY, PZ)− θ(Y )C(FX,PZ)}

=
c

4
{η(X)g(Y, PZ)− η(Y )g(X,PZ) + v(X)g(FY, PZ)

− v(Y )g(FX,PZ) + 2v(PZ)ḡ(X, JY )}.

Definition 1. A lightlike hypersurface M is said to be screen conformal [1] if
there exists a non-vanishing smooth function ϕ on any coordinate neighborhood
U in M such that A

N
= ϕA∗

ξ , or equivalently,

(4.5) C(X,PY ) = ϕB(X,Y ).

Theorem 4.1. Let M be a lightlike hypersurface of an indefinite complex space

form M̄(c) with a symmetric metric connection of type (ℓ, m). If M is screen

conformal, then c = 0 and mβ = 0. Moreover, if m = 0, then the Ricci type

tensor R(0, 2) is a symmetric induced Ricci tensor of M .

Proof. Assume that M is screen conformal. From (3.13), we get

B(ξ, U) = −mβ, B(ξ, V ) = 0.

From these two equations, (3.5) and (4.5), we have

−mβ = B(ξ, U) = C(ξ, V ) = ϕB(ξ, V ) = 0.

Put µ = U − ϕV . From (3.5) and (4.5), we show that

(4.6) B(X,µ) = 0.

Applying ∇X to C(Y, PZ) = ϕB(Y, PZ), we have

(∇XC)(Y, PZ) = (Xϕ)B(Y, PZ) + ϕ(∇XB)(Y, PZ).

Substituting this into (4.4) and using (4.3) with Z = PZ, we have

{Xϕ− 2ϕτ(X)}B(Y, PZ)− {Y ϕ− 2ϕτ(Y )}B(X,PZ)
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=
c

4
{η(X)g(Y, PZ)− η(Y )g(X,PZ) + 2[v(PZ)− ϕu(PZ)]ḡ(X, JY )

+ [v(X)− ϕu(X)]ḡ(FY, PZ)− [v(Y )− ϕu(Y )]ḡ(FX,PZ)}.

Taking Y = ξ and PZ = µ and using (3.13), (4.6) and mβ = 0, we have

c

2
{v(X)− 3ϕu(X)} = 0.

Replacing X by V to this equation and using (3.2), we obtain c = 0.
Substituting (4.2) into (3.17) and using (2.9) and (3.12), we have

R(0, 2)(X,Y ) = B(X,Y )tr A
N
− ϕg(A∗

ξX,A∗

ξY )

+ m{u(A
N
X)θ(Y )− θ(A

N
X)u(Y )}.

From this and Theorem 3.1, we see that if m = 0, then R(0, 2) is symmetric. �

Definition 2. A screen distribution S(TM) is said to be totally umbilical [3] if
there exists a smooth function γ on U such that A

N
X = γPX , or equivalently,

(4.7) C(X,PY ) = γg(X,Y ).

In case γ 6= 0, we say that S(TM) is proper totally umbilical in M .

Theorem 4.2. Let M be a lightlike hypersurface of an indefinite complex space

form M̄(c) with a symmetric metric connection of type (ℓ, m). If S(TM) is

totally umbilical, then c = 0 and mβ = 0. Moreover if mγ = 0, then M is flat

and S(TM) is totally geodesic. In case S(TM) is proper totally umbilical, the

local second fundamental form B of M is of the form

(4.8) B(X,Y ) = m{θ(V )g(X,Y )− θ(X)u(Y )}.

Proof. Replacing X by U to (3.13) and using (3.5) and (4.7), we have

−mβ = B(ξ, U) = C(ξ, V ) = γg(ξ, V ) = 0.

Applying ∇Z to (4.7) and using (2.11), we obtain

(∇XC)(Y, PZ) = (Xγ)g(Y, PZ) + γB(X,PZ)η(Y ).

Substituting this equation and (4.7) into (4.4), we have

{Xγ − γτ(X)− γℓθ(X)}g(Y, PZ)

− {Y γ − γτ(Y )− γℓθ(Y )}g(X,PZ)

+ γ{B(X,PZ)η(Y )−B(Y, PZ)η(X)}

+ mγ{θ(Y )g(FX,PZ)− θ(X)g(FY, PZ)}

=
c

4
{η(X)g(Y, PZ)− η(Y )g(X,PZ) + v(X)g(FY, PZ)

− v(Y )g(FX,PZ) + 2v(PZ)ḡ(X, JY )}.

Replacing Y by ξ this and using (3.2) and the fact that mβ = 0, we have

γB(X,PY ) = {ξγ − γτ(ξ)− γℓβ −
c

4
}g(X,PY )(4.9)



1178 DAE HO JIN

−
c

4
{v(X)u(PY ) + 2u(X)v(PY )} −mγθ(X)u(PY ).

Taking X = U, PY = V and X = V, PY = U to (4.9) by turns, we have

γB(U, V ) = ξγ − γτ(ξ)− γℓβ −
3

4
c,

γ{B(V, U) +mθ(V )} = ξγ − γτ(ξ) − γℓβ −
2

4
c.(4.10)

On the other hand, taking X = U and Y = V to (3.12), we have

B(U, V ) = B(V, U) +mθ(V ).

From the last three equations, we have c = 0. From (3.5) and (4.7), we obtain

(4.11) B(X,U) = γu(X).

Replacing X by V , we obtain B(V, U) = 0. From this and (4.10), we get

(4.12) mγθ(V ) = ξγ − γτ(ξ)− γℓβ.

From (4.9) and (4.12), we obtain

(4.13) γB(X,Y ) = mγ{θ(V )g(X,Y )− θ(X)u(Y )}.

Substituting (4.13) into (4.2) with c = 0, we have

R(X,Y )Z = mγ{θ(V )[g(Y, Z)PX − g(X,Z)PY ](4.14)

+ u(Z)[θ(X)PY − θ(Y )PX ]}.

Taking X = Y = U to (4.13) and using (4.11), we have

(4.15) γ2 = − mγθ(U).

From (4.14) and (4.15), we see that if mγ = 0, then M is flat and S(TM) is
totally geodesic. In case S(TM) is proper totally umbilical. From (4.13), we
have (4.8). Thus we have our theorem. �

From (4.14), we show that if M is screen totally geodesic, then M is flat. If
m = 0, then, from (4.8), (4.14) and (4.15), we see that R = 0 and γ = 0. Thus
we have the following result.

Corollary 4.3. Let M be a lightlike hypersurface of an indefinite complex space

form M̄(c) with a symmetric metric connection of type (ℓ, m) such that S(TM)
is totally umbilical. If B is symmetric, then M is flat and totally geodesic, and

S(TM) is also totally geodesic.

Theorem 4.4. Let M be a lightlike hypersurfaces of an indefinite almost com-

plex space form with a symmetric metric connection of type (ℓ, m). If S(TM)
is proper totally umbilical, then R(0, 2) is symmetric if and only if m = 0.

Proof. Substituting (4.14) into (3.17) and using (4.8), we obtain

R(0, 2)(X,Y ) = γ(n− 1)B(X,Y ),

due to mβ = 0. This result implies that R(0, 2) is symmetric if and only if B is
symmetric. Thus, by Theorem 3.1, we have our theorem. �
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5. Recurrent and Lie recurrent lightlike hypersurfaces

Definition 3. The structure tensor field F of M is said to be recurrent [8] if
there exists a 1-form ̟ on M such that

(5.1) (∇XF )Y = ̟(X)FY.

A lightlike hypersurface M of an indefinite Kaehler manifold M̄ is called re-

current if it admits a recurrent structure tensor field F .

Theorem 5.1. Let M be a recurrent lightlike hypersurface of an indefinite

Kaehler manifold M̄ with a symmetric metric connection of type (ℓ, m). Then

(1) F is parallel with respect to the induced connection ∇ on M ,

(2) D and J(tr(TM)) are parallel distributions on M ,

(3) M is locally a product manifold C
U
× M ♯, where C

U
is a null curve

tangent to J(tr(TM)) and M ♯ is a leaf of the distribution D.

(4) If M is screen conformal, then M and S(TM) are totally geodesic.

(5) If M̄ = M̄(c), then c = 0, i.e., M̄(c) is flat, and M is also flat.

Proof. (1) From (3.8) and (5.1), we get

(5.2) ̟(X)FY = u(Y )A
N
X −B(X,Y )U.

Replacing Y by ξ and using (2.8), (3.2) and the fact that Fξ = −V , we get
̟(X)V = 0. Taking the scalar product with U to this, we obtain ̟ = 0. It
follows that ∇XF = 0. Therefore, F is parallel with respect to ∇.

(2) Replacing Y by U to (5.2) such that ̟ = 0, we get A
N
X = σ(X)U .

Taking the scalar product with V to (5.2), we have B(X,Y ) = u(Y )σ(X), i.e.,

g(A∗

ξX,Y ) = g(σ(X)V, Y ).

As S(TM) is non-degenerate, we get A∗

ξX = σ(X)V . Therefore,

(5.3) A∗

ξX = σ(X)V, A
N
X = σ(X)U.

In general, by using (2.1), (2.4), (2.9), (3.3) and (3.7), we derive

(5.4) g(∇Xξ, V ) = −B(X,V ), g(∇XV, V ) = 0, g(∇XZ, V ) = B(X,FZ)

for all X ∈ Γ(TM) and Z ∈ Γ(Do). Taking the scalar product with V and
Z ∈ Γ(Do) to (5.3)1 by turns, we have B(X,V ) = 0 and B(X,Z) = 0 for all
X ∈ Γ(TM) respectively. It follow from (5.4) that

∇XY ∈ Γ(D), ∀X ∈ Γ(TM), ∀Y ∈ Γ(D),

due to FZ ∈ Γ(Do) for Z ∈ Γ(Do). Thus D is a parallel distribution on M .
Applying F to (5.3)2 and using the fact that FU = 0, we get

F (A
N
X) = σ(X)FU = 0.

Thus, from (3.6), we obtain

∇XU ∈ Γ(J(tr(TM))), ∀X ∈ Γ(TM).

Thus J(tr(TM)) is also a parallel distribution on M .
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(3) As D and J(tr(TM)) are parallel distributions satisfying (3.1). By the
decomposition theorem [2], M is locally a product manifold Cu×M ♯, where Cu
is a null curve tangent to J(tr(TM)) and M ♯ is the leaf of D.

(4) If M is screen conformal, then, from (5.3)1, 2 and A
N
= ϕA∗

ξ , we have

σ(X)U = ϕσ(X)V.

Taking the scalar product with V to this, we have σ = 0. Thus, by (5.3)1, 2,
we get A∗

ξ = 0 and A
N
= 0. Thus M and S(TM) are totally geodesic.

(5) Taking the scalar product with U to (5.3)2, we have

C(Y, U) = 0.

Applying ∇X to this and using (3.6), (5.3)2 and the fact that FU = 0, we have

(∇XC)(Y, U) = 0.

Replacing PZ by U to (4.4) and using the last two equations, we obtain

c

2
{v(Y )η(X)− v(X)η(Y )} = 0.

Taking X = ξ and Y = V to this, we have c = 0 and M̄(c) is flat.
Substituting (5.3)1, 2 into (4.2) satisfying c = 0, we get

R(X,Y )Z = {σ(Y )σ(X)− σ(X)σ(Y )}u(Z)U = 0.

Therefore R = 0 and M is also flat. �

Definition 4. The structure tensor field F of M is said to be Lie recurrent [8]
if there exists a 1-form ϑ on M such that

(5.5) (L
X
F )Y = ϑ(X)FY,

where L
X

denotes the Lie derivative on M with respect to X , that is,

(5.6) (L
X
F )Y = [X,FY ]− F [X,Y ].

The structure tensor field F is called Lie parallel if L
X
F = 0. A lightlike

hypersurface M of an indefinite Kaehler manifold M̄ is called Lie recurrent if
it admits a Lie recurrent structure tensor field F .

Theorem 5.2. Let M be a Lie recurrent lightlike hypersurface of an indefinite

Kaehler manifold M̄ with a symmetric metric connection of type (ℓ, m). Then

(1) F is Lie parallel.

(2) If ℓ = 0 or m = 1, then τ = 0.
(3) In case M̄ = M̄(c), if one of the lengths of A

N
ξ, A

N
V and A∗

ξU is

zero, then c = 0 and M̄(c) is flat.

Proof. (1) Using (3.4), (3.8), (3.11), (5.5) and (5.6), we get

ϑ(X)FY = u(Y )A
N
X −B(X,Y )U −∇FY X + F∇Y X(5.7)

+ ℓ{θ(Y )FX − θ(FY )X}

− m{θ(Y )X + θ(FY )FX − θ(Y )u(X)U}.
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Taking Y = ξ to (5.7) and using (2.8), (3.2) and Fξ = −V , we have

−ϑ(X)V = ∇V X + F∇ξX + ℓ{βFX + θ(V )X}(5.8)

− m{βX − θ(V )FX − βu(X)U}.

Taking the scalar product with V to (5.8) and using g(FX, V ) = 0, we have

(5.9) u(∇V X) + ℓθ(V )u(X) = 0.

Replacing X by U to this and using (3.6), we obtain

(5.10) τ(V ) + ℓθ(V ) = 0.

Replacing Y by V to (5.7) and using the fact that FV = ξ, we have

ϑ(X)ξ = −B(X,V )U −∇ξX + F∇V X + ℓ{θ(V )FX − βX}(5.11)

− m{θ(V )X + βFX − θ(V )u(X)U}.

Applying F to (5.11) and using (3.4) and (5.9), we obtain

ϑ(X)V = ∇V X + F∇ξX + ℓ{βFX + θ(V )X}

− m{βX − θ(V )FX − βu(X)U}.

Comparing this with (5.8), we obtain ϑ = 0. Thus F is Lie parallel.
(2) Replacing X by ξ to (5.8) and using (2.7) and (3.14), we have

A∗

ξV = −{τ(V )− ℓθ(V )}ξ + {τ(ξ)− ℓβ −mθ(V )}V.

Taking the scalar product with U and N by turns, we get

(5.12) C(V, V ) = τ(ξ) − ℓβ −mθ(V ), τ(V )− ℓθ(V ) = 0,

respectively. From (5.10) and (5.12)2, we see that

(5.13) τ(V ) = 0, ℓθ(V ) = 0.

Taking the scalar product with V to (5.11) and using g(FX, V ) = 0, we get

B(X,V ) + g(∇ξX,V ) + ℓβu(X) = 0.

Replacing X by U to this and using (3.6), we obtain

B(U, V ) = − τ(ξ)− ℓβ.

Taking X = U and Y = V to (3.12) and using (3.5) and (5.12)1, we have

B(U, V ) = τ(ξ) − ℓβ.

Comparing the last two equations, we obtain τ(ξ) = 0. We have

(5.14) A∗

ξV = −{ℓβ +mθ(V )}V.

Taking X = U and Y = ξ to (5.7) and using (3.4), (3.6) and (3.12), we get

(5.15) A
N
ξ = F (A

N
V )−mβU.

Taking X = U to (5.7) and using (3.4), (3.5), (3.6) and (3.12), we get

u(Y )A
N
U − F (A

N
FY )−A

N
Y(5.16)

− {τ(FY ) + ℓθ(FY ) +mθ(Y )−mθ(U)u(Y )}U = 0.
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Taking Y = V to (5.16) and using the fact that FV = ξ, we obtain

(5.17) A
N
V = −F (A

N
ξ)− {ℓβ +mθ(V )}U.

Taking the scalar product with U to this and using, we have

(5.18) C(V, U) = 0.

Replacing Y by U to (5.7) and using the fact FU = 0, we have

(5.19) A
N
X = B(X,U)U − F∇UX + θ(U){mX −mu(X)U − ℓFX}.

Taking X = ξ to this and using the fact that mβ = 0, we have

(5.20) A
N
ξ = F (A∗

ξU) +mθ(U)ξ −mβU − [τ(U)− ℓθ(U)]V.

Taking the scalar product with N to this equation, we have

(5.21) mθ(U) = 0.

Comparing (5.15) and (5.20), we obtain

F (A
N
V ) = F (A∗

ξU)− {τ(U)− ℓθ(U)}V.

Taking the scalar product with U to this equation, we have τ(U)− ℓθ(U) = 0.
Applying F to the last equation and using (3.12), we have

(5.22) A∗

ξU = A
N
V +mθ(V )U.

Taking the scalar product with X to (5.22) and using (3.5) and (3.12), we have

C(V,X)− C(X,V ) = m{θ(X)− θ(V )v(X)}.

Replacing X by U to this and using (5.18) and (5.21), we get

(5.23) C(U, V ) = 0.

Taking the scalar product with V to (5.16) and using (5.23), we have

(5.24) B(Y, U) = − τ(FY )− ℓθ(FY )−mθ(Y ).

Taking X = V to (5.7) and using (3.4), (3.7), (3.12) and FV = ξ, we obtain

u(Y )A
N
V − F (A∗

ξFY )−A∗

ξY +mθ(V )u(Y )U

− {τ(Y )− ℓθ(Y ) +mθ(FY )}ξ + {τ(FY )− ℓθ(FY )−mθ(Y )}V = 0.

Taking the scalar product with U and using C(V, U) = 0, we have

B(Y, U) = τ(FY )− ℓθ(FY )−mθ(Y ).

Comparing this equation with (5.24), we see that τ(FX) = 0. Replacing X by
FY to this and using (3.4), we have

τ(Y ) = ℓθ(U)u(Y ).

If ℓ = 0, then τ = 0. Also if m = 1, then θ(U) = 0 by (5.21). Thus τ = 0.
(3) Put f = C(U,U). Taking the scalar product with U to (5.16), we have

C(Y, U) = f u(Y ).
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Applying ∇X to this and using (3.6) and (3.9), we have

(∇XC)(Y, U) = (Xf)u(Y )− 2fu(Y )τ(X) − fB(X,FY )

− g(A
N
Y, F (A

N
X)).

Substituting the last two equations into (4.4), we have

(Xf)u(Y )− (Y f)u(X) + 2g(A
N
X,F (A

N
Y ))

+f{3u(X)τ(Y )− 3u(Y )τ(X)−B(X,FY ) +B(Y, FX)}

− fℓ{θ(X)u(Y )− θ(Y )u(X)}

=
c

2
{η(X)v(Y )− η(Y )v(X)}.

Taking X = ξ and Y = V to this equation, we have

−2g(A
N
V, F (A

N
ξ))− f{B(ξ, ξ) +B(V, V )} =

c

2
.

Using (3.13), (5.14), (5.15), (5.17) and (5.22), we obtain

g(A∗

ξU,A
∗

ξU) = g(A
N
V,A

N
V ) = g(A

N
ξ, A

N
ξ) =

c

4
.

Thus if one of the lengths of A
N
ξ, A

N
V and A∗

ξU is zero, then c = 0. �

Definition 5. The Jacobi operator on M with respect to the vector field X is
defined by R(· , X)X . In case X = U , the Jacobi operator is called structure

Jacobi operator and it is denoted by φ = R(· , U)U .

Theorem 5.3. Let M be a Lie recurrent lightlike hypersurfaces of an indefinite

complex space form M̄(c) with a symmetric metric connection of type (ℓ, m).
If the structure Jacobi operator φ is satisfied φ = 0, then c = 0.

Proof. Taking Y = Z = U to (4.2) and using (5.24), we have

φ(X) = −
c

4
v(X)U −B(X,U)A

N
U.

As φ = 0, taking the scalar product with V to the last equation and using
(5.23), we obtain c

4v(X) = 0. Replacing X by V to this, we get c = 0. �
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