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CRITICAL POINT METRICS OF

THE TOTAL SCALAR CURVATURE

Jeongwook Chang, Seungsu Hwang, and Gabjin Yun

Abstract. In this paper, we deal with a critical point metric of the total
scalar curvature on a compact manifold M . We prove that if the criti-
cal point metric has parallel Ricci tensor, then the manifold is isometric

to a standard sphere. Moreover, we show that if an n-dimensional Rie-
mannian manifold is a warped product, or has harmonic curvature with
non-parallel Ricci tensor, then it cannot be a critical point metric.

1. Introduction

Let M be an n-dimensional compact manifold and M be the space of C∞

Riemannian metrics on M . Let M1 ⊂ M be the set of smooth Riemannian
structures onM of volume 1. The total scalar curvature functional S : M1 → R
is defined by

S(g) =
∫
Mn

sgdvg.

Einstein and Hilbert showed that critical points of S are Einstein metrics. In
other words, the critical points satisfy zg = 0, where zg is the traceless Ricci
tensor. Due to the resolution of Yamabe problem, we may consider a non-empty
set

C = {g ∈ M1 | sg constant}.
In 1987 Besse proposed a conjecture that the critical points of the total scalar
curvature S restricted to C are Einstein metrics (see [1], p. 128). We will call it
Conjecture I throughout the paper. The Euler-Lagrange equation for a critical
point g of this restricted variational problem can be written as the following
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critical point equation (CPE, hereafter):

(1) zg = s′∗g (f)

for some smooth function f with vanishing mean value. Here, the operator s′∗g
is given by

(2) s′∗g (f) = Dgdf − g∆gf − frg,

whereDgdf is the Hessian of f , rg is Ricci curvature of g, and ∆g is the negative
Laplacian of g. It is obvious that a solution g of CPE is Einstein if f is trivial.
Thus we concentrate the case when (g, f) is a non-trivial solution of CPE.

There are some known results about Conjecture I with a non-trivial function
f . For example, Lafontaine showed that Conjecture I holds if a solution g of
CPE is conformally flat ([12]) and ker s′∗g ̸= 0. The third author showed that
Conjecture I holds if f ≥ −1 ([7]). The geometric structure of a solution to
CPE which is Einstein is known to be simple due to Obata, who showed that
such a solution is isometric to a standard n-sphere ([13]). For more details, we
refer [1] and [7].

In this paper, we first consider the case when the Ricci tensor of g is parallel.
Then we have the following answer of Conjecture I for ∇rg = 0 case.

Theorem 1.1. Let (M, g) be an n-dimensional compact Riemannian manifold,
n ≥ 3, and f be a non-trivial solution of CPE. If its Ricci tensor is parallel,
then (M, g) is isometric to a standard sphere.

Remark 1.2. It is well known that there is a relation between parallel Ricci
tensor and harmonic curvature. We say that (M, g) has harmonic curvature
if δR = 0. It turns out that every manifold with parallel Ricci tensor has
harmonic curvature. However, there are examples of compact and noncompact
Riemannian manifolds with δR = 0 and ∇rg ̸= 0 ([4], [6] Theorem 5.2). In
virtue of Theorem 1.1, it is natural to ask whether a solution metric of CPE
having harmonic curvature is Einstein. It is the topic of our forthcoming paper.

In the following we show that if δR = 0 and∇rg ̸= 0, then g is not necessarily
a solution of CPE in general.

Theorem 1.3. Let (M, g) be a compact, analytic n-dimensional manifold with
harmonic curvature. If the Ricci tensor is not parallel and has less than three
distinct eigenvalues at each point, g cannot be a solution of CPE.

By a classification result in [4] (Theorem 2), the Riemannian covering of
such a manifoldM in Theorem 1.3 is isometric to a warped product. Therefore,
Theorem 1.3 is an immediate consequence of the following result.

Theorem 1.4. Let g be a solution of CPE with a non-trivial function f . Then
(M, g) cannot be a warped product.

Recently, Lafontaine proved the following result.
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Theorem 1.5. Let (M, g) be a compact 3-dimensional Riemannian manifold
such that dimker s′∗g ≥ 2. Then (M, g) is isometric to a standard product

S1 × S2, S1 × P 2R or to the standard 3-sphere.

As an immediate consequence of Theorem 1.4 and Theorem 1.5, we have the
following important result:

Theorem 1.6. Let (M, g) be a compact 3-dimensional Riemannian manifold
such that dimker s′∗g ≥ 2 and g is a solution of CPE. Then (M, g) is isometric
to the standard 3-sphere.

Remark 1.7. Fisher and Marsden suggested a F-M conjecture in [5], stating
that if there exists a non-trivial function f ∈ C∞(M) such that

(3) s′∗g (f) = 0,

then (M, g) is isometric to a standard sphere. It is known that sg is a non-
negative constant if ker s′∗g ̸= 0 ([3], [5]). It turns out that there are counter-
examples of F-M conjecture, all of which are warped product ([10], [11]). The-
orem 1.4 says that if g is a warped product metric, then it cannot be a counter-
example to Conjecture I, contrary to F-M conjecture case. In [8] and [9], this
result has been proved when the dimension is 3 and 4, while Theorem 1.4 holds
for arbitrary dimension.

The paper is organized as follows. In Section 2, we shall give a brief collection
of notations and some technical results. Sections 3 and 4 will be devoted to
the proof of Theorem 1.4 which is crucially needed to prove our main results
Theorem 1.1 and Theorem 1.3. In Section 5, by using Theorem 1.3, we will
prove Theorem 1.1.

2. Preliminaries

Note that, by (1) and (2) the CPE may be written as

(4) (1 + f)zg = Dgdf +
sgf

n(n− 1)
g.

Taking the trace of (4) gives

(5) ∆gf = − sg
n− 1

f.

Here the scalar curvature sg is constant from the assumption.
For the proof of Theorem 1.4, we consider the case when M is an n-dimen-

sional warped product M = B ×ψ2 F , where (B, ǧ) and (F, ĝ) are two Rie-
mannian manifolds of dimension n−p and p, respectively, and ψ ∈ C∞(B) is a
positive function. The metric g is given by g = π∗ǧ + ψ2σ∗ĝ, where ∗ denotes
the pull back, and π and σ denote the projections of B × F onto B and F ,
respectively. Let

ř, š: the lifts to M of Ricci and scalar curvature of B, respectively,
r̂, ŝ: the Ricci and scalar curvature of F , respectively,
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Xi : a lifted horizontal orthonormal frame field, i = 1, . . . , dimB,
Uj : a lifted vertical orthonormal frame field, j = 1, . . . ,dimF ,
V : the vertical distribution.

Then the following results are well-known.

Proposition 2.1 ([1]). We have

r(Xi, Xj) = ř(X̌i, X̌j)− p
ψ Ďdψ(X̌i, X̌j),

r(Ui, Uj) = r̂(Ui, Uj) + ⟨Ui, Uj⟩
(
− ∆̌ψ

ψ − (p− 1) |dψ|
2

ψ2

)
,

sg = š+ ŝ
ψ2 − 2p ∆̌ψ

ψ − p (p− 1) |dψ|
2

ψ2 .

Corollary 2.2. If the scalar curvature sg of M is constant, then the scalar
curvature ŝ of F is constant.

Proof. For p = n− 1, Proposition 2.1 gives

(6) ŝ = ψ2sg + (n− 1)(2ψ′′ψ + (n− 2)ψ′2).

Since ŝ is a function on F , and the right-hand side of this equation is a func-
tion on B, ŝ should be a constant function on F , i.e., F is of constant scalar
curvature. For 1 < p < n − 1, this corollary follows similarly, since we have
ŝ = ψ2(sg − š) + 2pψ∆̌ψ + p(p− 1)|dψ|2. Finally, ŝ = 0 if p = 1. □

3. Proof of Theorem 1.4

Throughout the section we assume that (M, g) is an n-dimensional compact
warped product and g is a solution of CPE with a non-trivial solution function
f . The proof of Theorem 1.4 will be completed if there exists a contradiction.

Let (M, g) = (B, ǧ) ×ψ2 (F, ĝ) with p = dimF , and denote s for sg. In
the following we break into three cases: Case p = 1 (Subsection 3.1), Case
p = n−1 (Subsection 3.2), Case 1 < p < n−1 (Subsection 3.3). We will derive
a contradiction in each cases.

3.1. Case p = 1

By the definition of the Laplacian

(7) ⟨DUdf, U⟩ = ∆f − ∆̌f = − s

n− 1
f − ∆̌f

and by (4) and Proposition 2.1,

(8) (1 + f)

(
−∆̌ψ

ψ
− s

n

)
= ⟨DUdf, U⟩+ s

n(n− 1)
f.

Combining (7) and (8), we have

(9) (1 + f)∆̌ψ +
s

n
ψ = ψ∆̌f.

Integrating both sides of (9) over B, we obtain∫
B

f∆̌ψ +
s

n

∫
B

ψ =

∫
B

ψ∆̌f =

∫
B

f∆̌ψ,
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which implies that ∫
B

ψ = 0.

This is a contradiction since ψ > 0.

3.2. Case p = n − 1

First we prove that f ∈ C∞(B). From (4)

(10) 0 = (1 + f)z(X,Ui) = ⟨DXdf, Ui⟩ = X⟨df, Ui⟩ − ⟨df,DXUi⟩

for a lifted horizontal vector field X. Note that Ui =
1
ψ Ûi, where Ûi is a lift of

vector field on F . Therefore

(11) DXUi = DX

(
1

ψ
Ûi

)
= −X(ψ)

ψ2
Ûi +

1

ψ
DX Ûi = 0,

where we used the fact that DX Ûi = X(ψ)
ψ Ûi in the last equality (cf. [14]).

Now, substitution of (11) into (10) gives

(12) XUi(f) = X⟨df, Ui⟩ = 0.

Therefore Ui(f) =
1
ψ Ûi(f) ∈ C∞(F ), and it is easy to see that f can be written

as

(13) f = ψb+ c,

where b ∈ C∞(F ) and c = c(t) ∈ C∞(B). Substituting (13) into

(1 + f)z(X,X) = ⟨DXdf,X⟩+ sf
n(n−1) gives

(14) (1 + ψb+ c)

(
−(n− 1)

ψ′′

ψ
− s

n

)
= ψ′′b+ c′′ +

s

n(n− 1)
(ψb+ c),

where we used Proposition 2.1 and the fact that, from ďf = bdψ + dc and

DX d̂f = VDX d̂f ,

⟨DXdf,X⟩ = ⟨DX ďf ,X⟩+ ⟨DX d̂f ,X⟩ = ⟨DX ďf ,X⟩
= b⟨DXdψ,X⟩+ ⟨DXdc,X⟩ = ψ′′b+ c′′.

Thus, the equation (14) can be rewritten as

(15) b

(
−nψ′′ − s

n− 1
ψ

)
= (1 + c)

(
(n− 1)ψ′′

ψ
+
s

n

)
+ c′′ +

s

n(n− 1)
c.

Note that both −nψ′′− s
n−1ψ and the right-hand side are functions of B, while

b ∈ C∞(F ). Thus, in order that the equation (15) holds for any t, either b is
constant or −nψ′′ − s

n−1ψ has to be zero.
We show that b must be a constant. On the contrary, suppose that b is not

a constant. Then −nψ′′ − s
n−1ψ = 0. Since B is complete, ψ has to be defined

on the whole of R. Moreover, since B = S1, ψ has to be periodic. Therefore

0 =

∫
B

(
ψ′

ψ

)′

=

∫
B

ψ′′

ψ
− ψ′2

ψ2
= −

∫
B

(
s

n(n− 1)
+
ψ′2

ψ2

)
< 0.
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This contradiction leads to the conclusion that b is constant, and in virtue of
(13) f ∈ C∞(B).

Now we prove that g cannot be a solution of CPE. Since f ∈ C∞(B), we
compute

(16) ⟨DUidf, Ui⟩ = ⟨DUi ďf , Ui⟩ =
ψ′f ′

ψ

for each i, since DUi ďf = ψ′∂tf
ψ Ui (cf. [1]). Now, from (4)

(17) (1 + f)

(
r̂(Ui, Ui)−

ψ′′

ψ
− (n− 2)

ψ′2

ψ2
− s

n

)
=
ψ′

ψ
f ′ +

sf

n(n− 1)
.

Then it is easy to see that r̂(Ui, Ui) = r̂(Uj , Uj) for i ̸= j. Thus r̂(Ûi, Ûi) =
ŝ

n−1

for all 1 ≤ i ≤ n − 1, and r̂(Ui, Uj) = 0 for i ̸= j. In other words, F is an

Einstein manifold and r̂(Ui, Ui) =
ŝ

(n−1)ψ2 .

On the other hand, for any Riemannian manifold the divergence δR of its
curvature tensor R satisfies the well-known identity

(18) δR = −drg,

where drg denotes the Riemannian exterior derivative of rg. The local coordi-
nate expression for (18) is

(19) ∇iRaibc = ∇crab −∇brac.

If we make the change of the function ζ = ψ
n
2 in (6), we have

(20) ζ ′′ − nŝ

4(n− 1)
ζ1−

4
n = − ns

4(n− 1)
ζ.

Derdziński showed in Lemma 1 of [4] that if ψ is non-constant and n ≥ 3, then
I ×ψ2 F has harmonic curvature if and only if (F, ĝ) is an Einstein space and

the positive function ζ = ψ
n
2 on I satisfies (20). Recall that M has harmonic

curvature if and only if δR = 0. HereM is analytic in a suitable local coordinate
([2]) and is not conformally flat unless ĝ has constant sectional curvature (see
Remark 3.1).

Thus we may conclude that M has harmonic curvature, and by (18) and
(19), ∇crab = ∇brac. In particular, for i ≥ 2 we have ∇1rii = 0. Note that by
Proposition 2.1 and (6)

(21) rii = r(Ui, Ui) =
ŝ

(n− 1)ψ2
− ψ′′

ψ
− (n− 2)

ψ′2

ψ2
=

s

n− 1
+
ψ′′

ψ

for i ≥ 2. Since the equation (6) together with the fact that ŝ is constant
implies

(22)
ψ′′′

ψ
= − s

n− 1

ψ′

ψ
− (n− 1)

ψ′′ψ′

ψ2
,
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it follows from (21) and (22) that

(23) 0 = ∇1rii = −ψ
′

ψ

(
s

n− 1
+ n

ψ′′

ψ

)
.

Therefore, when ψ′ ̸= 0, by (23)

(24)
ψ′′

ψ
= − s

n(n− 1)
< 0.

By the analytic property and continuity of ψ, the equation (24) holds on all of

B = S1. However, if ψ takes its minimum, ψ
′′

ψ ≥ 0, which is impossible. This

contradiction completes the proof.

Remark 3.1. When n = 3, 4, the proof can be simplified as follows. Since ĝ is
Einstein, (F, ĝ) has constant curvature. Thus (M, g) is conformally flat, and is
Einstein by Lafontaine [12], and is isometric to Sn by Obata [13], as mentioned
in Introduction. Hence a warped product S1 ×ψ2 F cannot be a solution of
CPE.

3.3. Case 1 < p < n − 1

First we need the following lemma, which will be proved in Section 4.

Lemma 3.2. If f ∈ C∞(B), then g cannot be a solution of CPE.

Once we assume Lemma 3.2, it suffices to prove that f ∈ C∞(B). First, as
in Case p = n− 1, we have

(25) f = ψb+ c,

where b ∈ C∞(F ) and c ∈ C∞(B). By Proposition 2.1 and (4),

(26) (1 + f)

(
š− p

ψ
∆̌ψ − n− p

n
s

)
=

n−p∑
i=1

⟨DXi
df,Xi⟩+

(n− p)sf

n(n− 1)
.

Now, substitution (25) into (26) gives

(27) (1 + ψb+ c)

(
š− p

ψ
∆̌ψ − n− p

n
s

)
= b∆̌ψ + ∆̌c+

(n− p)s

n(n− 1)
(ψb+ c),

where we used the fact that
n−p∑
i=1

⟨DXidf,Xi⟩ =
n−p∑
i=1

(⟨DXi ďf ,Xi⟩+ ⟨DXi d̂f ,Xi⟩) =
n−p∑
i=1

⟨DXi ďf ,Xi⟩

= b

n−p∑
i=1

⟨DXidψ,Xi⟩+
n−p∑
i=1

⟨DXidc,Xi⟩ = b∆̌ψ + ∆̌c

with DXi d̂f = VDXi d̂f . The equation (27) can be rewritten as

(28) b

(
ψš− (p+ 1)∆̌ψ − n− p

n− 1
sψ

)
= ∆̌c− (c+ 1)Θ +

(n− p)s

n(n− 1)
c,
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where Θ = š− p
ψ ∆̌ψ− n−p

n s. Note that both ψš− (p+1)∆̌ψ− n−p
n−1sψ and the

right-hand side of (28) are functions of B, while b ∈ C∞(F ). Thus, in order
that the equation (28) holds, either b is constant or ψš − (p + 1)∆̌ψ − n−p

n−1sψ
has to be zero.

If we prove that b is constant, we are done by (25). Assume that b is not
constant. Then we have

(29) š = (p+ 1)
∆̌ψ

ψ
+
n− p

n− 1
s,

and

(30) ∆̌c− (c+ 1)

(
š− p

∆̌ψ

ψ
− n− p

n
s

)
+

(n− p)s

n(n− 1)
c = 0.

Substitution of (29) into (30) gives

(31) ψ∆̌c− (c+ 1)∆̌ψ − n− p

n(n− 1)
sψ = 0.

Now, integrating both sides of (31) over B, we have

(32) s
n− p

n(n− 1)

∫
B

ψ = 0,

which contradicts the fact that ψ > 0.

4. Proof of Lemma 3.2

Assume that g is a warped product satisfying (4) and f ∈ C∞(B). In the
following, we shall prove that this assumptions give a contradiction. Thus we
may conclude that g cannot be a solution of CPE, proving Lemma 3.2.

Consider a set H = {x ∈ B | f(x) = −1}. Here H should be non-empty,
otherwise by Main Theorem in [7] (M, g) is isometric to a standard sphere Sn,
which is not a warped product.

Lemma 4.1. For a unit tangent vector field X ∈ TB to H,

(33) DXX = − s

n(n− 1)
df + (tangential terms) on H.

Proof. It is shown in [7] that a point of H, which is a critical point of f , is a
non-degenerate local minimum point of f , and that such non-degenerate critical
points are isolated. Therefore, H is a set consisting of finite critical points of
f , or hypersurfaces of M , or union of both.

PuttingW = |df |2, it was proved in [7] thatW is constant in each component
of H and does not vanish on H. Therefore, in a small tubular neighborhood
of H, we may take orthonormal frame fields {X1, . . . , Xn−p−1, N}, where N =
df

W
1
2
on H. From (4), we have

(34) Ddf =
s

n(n− 1)
g



CRITICAL POINT METRICS OF THE TOTAL SCALAR CURVATURE 663

on H. Then, it follows that on H we have

s

n(n− 1)
= ⟨DXi

df,Xi⟩ = Xi⟨df,Xi⟩ − ⟨df,DXi
Xi⟩ = −⟨df,DXi

Xi⟩.

Hence, DXiXi = − s
n(n−1)

1

W
1
2
N+(tangential terms) on H, which is (33). □

Now we are ready to prove Lemma 3.2.

Proof of Lemma 3.2. In virtue of Proposition 2.1, (4) may be reduced to

(35) (1 + f)

(
š− p

ψ
∆̌ψ − s

n
(n− p)

)
= ∆̌f +

(n− p)sf

n(n− 1)
,

and

(36) (1 + f)

(
ŝ

pψ2
− ∆̌ψ

ψ
− (p− 1)

|dψ|2

ψ2
− s

n

)
=

⟨dψ, df⟩
ψ

+
sf

n(n− 1)
,

where ǧ(dψ, df) = ⟨dψ, df⟩. Hence, using (35) and (36) we have

(37) ∆̌f =
(n− p)s

n(n− 1)
,

and

(38)
⟨dψ, df⟩

ψ
=

s

n(n− 1)

on H. The relation
∑n−p
i=1 z(Xi, Xi) +

∑p
i=1 z(Ui, Ui) = 0 gives

(39) (1 + f)(−š+ p

ψ
∆̌ψ +

s

n
(n− p)) = p

⟨dψ, df⟩
ψ

+ p
sf

n(n− 1)
.

In virtue of (34) and (38)

⟨dψ,Ddfdf⟩
ψ

=
s

n(n− 1)

⟨df, dψ⟩
ψ

=

(
s

n(n− 1)

)2

=
⟨dψ, df⟩2

ψ2
.

So taking the Lie derivative of (39) with respect to df on H, we have

W

(
−š+ p

ψ
∆̌ψ +

s

n
(n− p)

)
= p

⟨Ddfdψ, df⟩
ψ

+ p
⟨dψ,Ddfdf⟩

ψ
− p

⟨dψ, df⟩2

ψ2
+

sp

n(n− 1)
W

= p
⟨DNdψ,N⟩

ψ
W +

sp

n(n− 1)
W.

Therefore

(40) š = s

(
n− p− 1

n− 1

)
+
p

ψ

n−p−1∑
i=1

⟨DXidψ,Xi⟩.
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On the other hand, in order to calculate z(X,X) we take the Lie derivative
of (4) with respect to df on H. Then on H

Wz(X,X) = ⟨DdfDXdf,X⟩+ ⟨DXdf,DdfX⟩+ s

n(n− 1)
W

=W
1
2 ⟨DNDXdf,X⟩+ |DXdf |2 +

s

n(n− 1)
W

=W
1
2 ⟨DNDXdf,X⟩+ s2

n2(n− 1)2
+

s

n(n− 1)
W,(41)

where we used the fact that W is constant on H, DdfX = W− 1
2DNX =

W− 1
2DXN = DXdf , and DXdf = s

n(n−1)X on H. However, the relation

DNDXdf = DXDNdf +R(X,N)df gives

⟨DNDXdf,X⟩ = ⟨DXDNdf,X⟩+ ⟨R(X,N)df,X⟩

= X⟨DNdf,X⟩ − ⟨DNdf,DXX⟩ −W
1
2K(X,N)

=
s

n(n− 1)W
1
2

⟨DNdf,N⟩ −W
1
2K(X,N)

=
s2

n2(n− 1)2W
1
2

−W
1
2K(N,N),(42)

where we used the fact that ⟨DNdf,X⟩ = 0, (33), and (34) on H. Now substi-
tuting (42) into (41), we have

z(X,X) =
2s2

n2(n− 1)2W
−K(X,N) +

s

n(n− 1)
.

Thus

(43)

n−p−1∑
i=1

z(Xi, Xi) =
2s2(n− p− 1)

n2(n− 1)2W
− ř(N,N) +

s

n(n− 1)
(n− p− 1),

where we used the fact that
∑n−p−1
i=1 K(Xi, N) = ř(N,N).

Note that from Proposition 2.1 we have

(44)

n−p−1∑
i=1

z(Xi, Xi) = š− ř(Ň , Ň)−
n−p−1∑
i=1

p

ψ
Ďdψ(X̌i, X̌i)−

s

n
(n− p− 1).

Equating (43) with (44) gives

(45) š =
2s2(n− p− 1)

n2(n− 1)2W
+ s

(
n− p− 1

n− 1

)
+
p

ψ

n−p−1∑
i=1

⟨DXidψ,Xi⟩.

The equation (45) clearly contradicts the equation (40). □

Remark 4.2. This proof is not applicable for Case p = 1 since the equation
(40) is meaningful only for p ≥ 2.
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5. Proof of Theorem 1.1

In this section we will prove Theorem 1.1. It suffices to prove the following
lemma, since if M is Einstein, it is isometric to a standard sphere by Obata
([13]).

Lemma 5.1. If g is a solution of CPE with ∇rg = 0, then (M, g) is Einstein.

Proof. If ∇rg = 0, from the fact that Ricci curvature remains invariant under
the action by the holonomy groups of M , and the de Rham decomposition
theorem, M is locally isometric to products of Einstein manifolds ([6]), M1 ×
M2 × · · · ×Mk. Denote M2 × · · · ×Mk by F . Thus there exists a smooth map
φ : (M, g) → (M1×F, g̃) such that for every p ∈M there exists a neighborhood

U for which φ|U : U → φ(U) is an isometry. Then g̃ = (φ−1)
∗
g with f̃ = f◦φ−1

satisfies

(1 + f̃)zg̃ = Dg̃df̃ +
s̃f̃

n(n− 1)
g̃.

We will follow the proof of Theorem 1.4.
Let p = dimF . Without loss of generality, we can assume that dimM1 ≥ 1.

We will derive a contradiction when 1 ≤ p ≤ n − 1, implying that p = 0, i.e.,
M is itself locally isometric to an Einstein manifold, proving our lemma. Note
that ψ ≡ 1, and š and ŝ for g̃ are constants.

For p = 1, from ⟨DUdf̃ , U⟩ = − s̃
n−1 f̃ − ∆̌f̃ and

− s̃

n
(1 + f̃) = ⟨DUdf̃ , U⟩+ s̃

n(n− 1)
f̃ ,

we obtain

∆̌f̃ =
s̃

n
> 0.

However, ∆̌f̃ ≤ 0 at a local maximum point of f̃ , which is impossible.

For p = n− 1, following the first part of the proof in Section 3.2, f̃ = b+ c,
where b ∈ C∞(F ) and c ∈ C∞(M1). By (15) we have

− s̃

n− 1
b =

s̃

n
+ c′′ +

s̃

n− 1
c.

Thus b is constant and f̃ = b + c ∈ C∞(M1). Now from (6) and (17), ŝ = s̃
and

(1 + f̃)

(
ŝ

n− 1
− s̃

n

)
=

s̃f̃

n(n− 1)
,

which implies that s̃
n(n−1) = 0, a contradiction.

For 1 < p < n−1, following the first part of the proof in Section 3.3, f̃ = b+c
and by (28)

(46) b

(
š− n− p

n− 1
s̃

)
= ∆̌c− (c+ 1)

(
š− n− p

n
s̃

)
− n− p

n(n− 1)
c.



666 JEONGWOOK CHANG, SEUNGSU HWANG, AND GABJIN YUN

If š ̸= n−p
n−1 s̃, then b is constant and f̃ = b+ c ∈ C∞(M1). Then from (36)

(1 + f̃)

(
ŝ

p
− s̃

n

)
=

s̃

n(n− 1)
f̃ ,

which is simplified as

(47)

(
s̃

n− 1
− ŝ

p

)
f̃ =

ŝ

p
− s̃

n
.

In order for (47) to hold, the following equations should hold:

s̃

n− 1
− ŝ

p
= 0 =

ŝ

p
− s̃

n
,

which implies that s̃
n(n−1) = 0, a contradiction.

If š = n−p
n−1 s̃, by (26)

(n− p)s̃

n(n− 1)
(1 + f̃) = ∆̌f̃ +

(n− p)s̃

n(n− 1)
f̃ ,

which is simplified as

∆̌f̃ =
(n− p)s̃

n(n− 1)
> 0.

However, ∆̌f̃ ≤ 0 at a local maximum point of f̃ , which is impossible. □
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Math. Pures Appl. (9) 62 (1983), no. 1, 63–72.

[13] M. Obata, Certain conditions for a Riemannian manifold to be isometric with a sphere,
J. Math. Soc. Japan 14 (1962), no. 3, 333–340.



CRITICAL POINT METRICS OF THE TOTAL SCALAR CURVATURE 667

[14] B. O’Neill, Semi-Riemannian Geometry, Academic Press, New York, 1983.

Jeongwook Chang
Department of Mathematics Education
Dankook University
Yongin 448-701, Korea

E-mail address: jchang@dankook.ac.kr

Seungsu Hwang

Department of Mathematics
Chung-Ang University
Seoul 156-756, Korea
E-mail address: seungsu@cau.ac.kr

Gabjin Yun
Department of Mathematics

Myong Ji University
Yongin 449-728, Korea
E-mail address: gabjin@mju.ac.kr


