A REMARK ON STATISTICAL MANIFOLDS WITH TORSION

Hwajeong Kim

Abstract

Consider a Riemannian manifold M equipped with a metric g. In this article, we study a notion for statistical manifolds (M, g, ∇), which can have a nonzero torsion, abbreviated to SMT. Then it turns out that the tensor fields ∇g and $\tilde{\nabla} g$ obtained from two different SMT-connections are different.

1. Introduction

Let M be a manifold with a metric g. Given a linear connection ∇ there exists a unique connection ∇^{*} such that

$$
d(g(X, Y))=g(\nabla X, Y)+g\left(X, \nabla^{*} Y\right)
$$

and we then say that ∇, ∇^{*} are dual connections with respect to the metric g.
A statistical manifold can be defined using the notion of dual connections, that is, a manifold $\left(M, g, \nabla, \nabla^{*}\right)$ satisfying

$$
T^{\nabla}=T^{\nabla^{*}}=0
$$

where the torsion of ∇ is given by

$$
T^{\nabla}(X, Y)=\nabla_{X} Y-\nabla_{Y} X-[X, Y] .
$$

There are a few equivalent ways in which statistical manifolds have been introduced; for details we refer to $[1,3,7,11]$.

In this article, we consider statistical manifolds whose torsions are not necessarily zero. We will use a notion of "statistical manifolds admitting torsion" as introduced in [6] and abreviate it as "SMT".

The difference between a linear connection ∇ and the Levi-Civita connection ∇^{g} is a $(2,1)$-tensor field denoted by A, that is

$$
\begin{equation*}
\nabla_{X} Y=\nabla_{X}^{g} Y+A(X, Y) \tag{1}
\end{equation*}
$$

The notation A is also used for the (3,0)-tensor defined by

$$
A(X, Y, Z)=g(A(X, Y), Z)
$$

In [5], given a $\operatorname{SMT}(M, g, \nabla)$ with $\nabla=\nabla^{g}+A$, an equivalent condition for the difference tensor A is computed, see (8). In this article, we will consider the space

[^0]of A satisfying this condition and denote the space by $\mathcal{S M} \mathcal{T}$. We also consider the symmetric space of \mathcal{A}^{S} consisting of $(3,0)$-tensor fields A which are symmetric with respect to the second and third variables.

In the main Theorem, we will then construct a bijection between $\mathcal{S M \mathcal { T }}$ and \mathcal{A}^{S}. Here we observe that \mathcal{A}^{S} is actually the space of ∇g 's where (M, g, ∇) is a SMT, so we conclude that $\nabla g \neq \tilde{\nabla} g$ for two different SMT-connections ∇ and $\tilde{\nabla}$.

2. Preliminaries

Let (M, g) be a Riemannian manifold and $\Gamma(M), \Gamma^{*}(M)$ the set of sections of the tangent bundle $T M, T^{*} M$, respectively.

A linear connection ∇ is then a map

$$
\nabla: \Gamma(M) \otimes \Gamma(M) \rightarrow \Gamma(M)
$$

with some properties and gives a way how to transport a vector field along a direction.
A metric connection ∇ is a linear connection, which gives isometries between tangent spaces by parallel transport, that is

$$
\begin{equation*}
V(g(X, Y))=g\left(\nabla_{V} X, Y\right)+g\left(X, \nabla_{V} Y\right) \tag{2}
\end{equation*}
$$

The condition (2) is equivalent to $\nabla g=0$, since for $(2,0)$ - tensor field g

$$
\left(\nabla_{V} g\right)(X, Y)=V(g(X, Y))-g\left(\nabla_{V} X, Y\right)-g\left(X, \nabla_{V} Y\right)
$$

The Levi-Civita connection, denoted by ∇^{g}, is the unique metric connection with torsion $T=0$.

The difference between a linear connection ∇ and the Levi-Civita connection ∇^{g} is a $(2,1)$-tensor (field) A, that is, for any tangent vector fields $X, Y \in \Gamma(M)$,

$$
\nabla_{X} Y=\nabla_{X}^{g} Y+A(X, Y)
$$

Using the same notation, a (3,0)-tensor A is defined by

$$
A(X, Y, Z)=\langle A(X, Y), Z\rangle
$$

We now consider the case where isometries between tangent spaces are obtained by parallel transports with respect to two connections ∇, ∇^{*} as follows.

Definition 2.1 (Dual Connections). For a linear connection ∇, the dual connection ∇^{*} of ∇ with respect to g is defined by

$$
\left.Z(g(X, Y))=g\left(\nabla_{Z} X, Y\right)+g\left(X, \nabla_{Z}^{*} Y\right)\right)
$$

By the expression (1) let

$$
\begin{align*}
\nabla_{X} Y & =\nabla^{g}+A(X, Y) \tag{3}\\
\nabla_{X}^{*} Y & =\nabla^{g}+A^{*}(X, Y) \tag{4}
\end{align*}
$$

We can then easily check the following.
Lemma 2.2. Given a linear connection ∇ and its dual connection ∇^{*} defined as above, the following equality holds:

$$
\begin{equation*}
\langle A(Z, X), Y\rangle+\left\langle X, A^{*}(Z, Y)\right\rangle=A(Z, X, Y)+A^{*}(Z, Y, X)=0 \tag{5}
\end{equation*}
$$

So, a linear connection ∇ has a unique dual connection ∇^{*}

3. Statistical manifolds admitting torsion

A statistical manifold in a classical sense is a torsion-free manifold with some properties.

In [6] a notion for generalized statistical manifolds is introduced. There are some well-known equivalent properties of these statistical manifolds. In this article, we take the following properties as definitions.

Definition 3.1. [2, 3, 6, 8]
(i) A Riemannian manifold (M, g, ∇) is a statistical manifold if

$$
\begin{equation*}
\left(\nabla_{X} g\right)(Y, Z)-\left(\nabla_{Y} g\right)(X, Z)=0 \tag{6}
\end{equation*}
$$ for $X, Y, Z \in \Gamma(T M)$.

(ii) A Riemannian manifold (M, g, ∇) is a statistical manifold admitting torsion, (SMT) for short, if

$$
\begin{equation*}
\left(\nabla_{X} g\right)(Y, Z)-\left(\nabla_{Y} g\right)(X, Z)=-g\left(T^{\nabla}(X, Y), Z\right) \tag{7}
\end{equation*}
$$

for $X, Y, Z \in \Gamma(T M)$, where T^{∇} is the torsion tensor of ∇.
Considering the difference tensor field A as in (3), we obtain the following result.
Proposition 3.2. [5, 8] Given a Riemannian manifold (M, g, ∇) the following conditions are equivalent.
(i) $\left(M, g, \nabla, \nabla^{*}\right)$ is a $S M T$.
(ii) Let $\nabla=\nabla^{g}+A$. Then it holds

$$
\begin{equation*}
A(X, Y, Z)=A(Z, Y, X) \quad \text { for } X, Y, Z \in \Gamma(T M) \tag{8}
\end{equation*}
$$

(iii) $T^{\nabla^{*}}=0$.

Here we note that a statistical manifold $\left(M, g, \nabla, \nabla^{*}\right)$ in a classical sense is the manifold with $T^{\nabla}=T^{\nabla^{*}}=0$.

We consider the $(3,0)$ - tensor field A as an element of $\otimes^{3} T M$, identifying $T M$ with $T M^{*}$. Then by Proposition 3.2 (ii), for the set of SMT's we can consider a space as follows:

$$
\mathcal{S M T}=\left\{A \in \otimes^{3} T M \mid A(X, Y, Z)=A(Z, Y, X)\right\}
$$

We also take a symmetric space:

$$
\mathcal{A}^{S}=\left\{A \in \otimes^{3} T M \mid A(X, Y, Z)=A(X, Z, Y)\right\}=T M \otimes S^{2} T M
$$

We will then find a bijection between the above two spaces in the following theorem.
Theorem 3.3. A bijection between $\mathcal{S M} \mathcal{T}$ and \mathcal{A}^{S} arises from the following:
For $S \in \mathcal{S M} \mathcal{M}$, we associate $G \in \mathcal{A}^{S}$ by

$$
\begin{equation*}
G(X, Y, Z)=S(X, Y, Z)+S(X, Z, Y) \tag{9}
\end{equation*}
$$

And for $G \in \mathcal{A}^{S}$, we associate $S \in \mathcal{S M T}$ by

$$
2 S(X, Y, Z)=G(X, Y, Z)-G(Y, Z, X)+G(Z, X, Y)
$$

Proof. Given $S \in \mathcal{S} \mathcal{M} \mathcal{T}$, we get $G \in \mathcal{A}^{S}$ by

$$
G(X, Y, Z)=S(X, Y, Z)+S(X, Z, Y) \in \mathcal{A}^{S}
$$

Now since $S \in \mathcal{S} \mathcal{M} \mathcal{T}$,

$$
\begin{aligned}
& G(X, Y, Z)-G(Y, Z, X)+G(Z, X, Y) \\
&= S(X, Y, Z)+S(X, Z, Y)-S(Y, Z, X)-S(Y, X, Z) \\
&+S(Z, X, Y)+S(Z, Y, X) \\
&= 2 S(X, Y, Z)
\end{aligned}
$$

We note that the above (9) gives a linear map for each $T_{x} M, x \in M$.
Finally, the elements of $\mathcal{S} \mathcal{M} \mathcal{T}$ and \mathcal{A}^{S} are symmetric with respect to two variables, namely, first and third ones for $\mathcal{S M} \mathcal{T}$, second and third ones for \mathcal{A}^{S}. So, $\mathcal{S M} \mathcal{T}$ and \mathcal{A}^{S} have the same dimension.

We now conclude that the mapping (9) is a bijection from $\mathcal{S M} \mathcal{T}$ to \mathcal{A}^{S}.
Corollary 3.4. Two different SMT-connections ∇ and $\tilde{\nabla}$ give two different and tensor fields ∇g and $\tilde{\nabla} g$.

Proof. For $\nabla=\nabla^{g}+A$, recall that

$$
\begin{equation*}
\nabla g=A(X, Y, Z)+A(X, Z, Y) \tag{10}
\end{equation*}
$$

So, by the bijection in Theorem 3.3, we have two different tensor fields ∇g and $\tilde{\nabla} g$ for two different SMT- connection $\nabla, \tilde{\nabla}$.

Here (10) follows from

$$
\begin{aligned}
\nabla g(X, Y, Z) & =\left(\nabla_{X} g\right)(Y, Z) \\
& =X(g(Y, Z))-g\left(\nabla_{X} Y, Z\right)-g\left(Y, \nabla_{X} Z\right) \\
& =\nabla^{g} g(X, Y, Z)+A(X, Y, Z)+A(X, Z, Y) \\
& =A(X, Y, Z)+A(X, Z, Y) .
\end{aligned}
$$

Remark 3.5. Since $\otimes^{2} T M=\Lambda^{2} T M \oplus S^{2} T M$ where the tensor product Λ^{2} and S^{2} is skew-symmetric and symmetric tensor products, respectively, we have

$$
\otimes^{3} T M=\mathcal{A}^{M} \oplus \mathcal{A}^{S}
$$

with

$$
\mathcal{A}^{M}=\left\{A \in \otimes^{3} T M \mid A(X, Y, Z)=-A(X, Z, Y)\right\}=T M \otimes \Lambda^{2} T M
$$

So, from the bijection in Theorem 3.3 we also have a bijection between $\mathcal{S M} \mathcal{T}$ and $\otimes^{3} T M / \mathcal{A}^{M}$. Note that \mathcal{A}^{M} is the space of A 's of metric connections ∇, that is, linear connections with $\nabla g=0$.

References

[1] S. Amari, Information Geometry and Its Applications, Applied Mathematical Sciences. Springer Japan (2016).
[2] A.M.Blaga, A. Nannicini, Conformal-projective transformations on statistical and semi-Weyl manifolds with torsion, arXiv.2209.00689vl, (2022).
[3] O.Calin, C. Udriste, Geometric Modeling in Probability and Statistics, Springer (2013).
[4] E. Cartan, Sur les varietes a connexion affine et la theorie de la relativite generalisee, Ann. Ec. Norm. Sup. 42 (1925), 17-88,
English transl. by Magnon and A. Ashtekar, On manifolds with an affine conneciton and the theory of general relativity, Napoli: Bibliopolis (1986).
[5] H. Kim, A note on statistical manifolds with torsion, Communi. Korean Math. Soc. 38 (2023), No. 2, 621-628.
[6] T. Kurose, Statistical manifolds admitting torsion. Geometry and Something. (2007), in Japanese.
[7] S. L. Lauritzen, Statistical manifolds, Differential Geometry in statistical inference, 10 (1987), 163-216.
[8] H. Matsuzoe, Statistical manifolds and affine differential geometry, Advanced Studies in Pure Mathematics 57, Probabilistic Approach to Geometry (2010), 303-321.
[9] H. Nagaoka, S. Amari, Differential geometry of smooth families of probability distributions, Technical Report (METR) 82-7, Dept. of Math. Eng. and Instr. Phys., Univ. of Tokyo, (1982)
[10] A. P. Norden, On pairs of conjugate parallel displacements in multidimensional spaces, In Doklady Akademii nauk SSSR, volume 49 (1945), 1345-1347.
[11] U. Simon, in Affine Differential Geometry, Handbook of Differential Geometry, vol. I (ed. by F. Dillen, L. Verstraelen), Elsevier Science, Amaterdam (2000), 905-961.

Hwajeong Kim

Department of Mathematics, Hannam University,
Daejeon 306-791, Korea
E-mail: hwajkim@hnu.ac.kr

[^0]: Received March 21, 2023. Revised May 1, 2023. Accepted June 1, 2023.
 2010 Mathematics Subject Classification: 53A35, 53B05, 53B15, 53C05, 53C80.
 Key words and phrases: metric connection, torsion, dual connections, statistical manifold.
 (C) The Kangwon-Kyungki Mathematical Society, 2023.

 This is an Open Access article distributed under the terms of the Creative commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.

