A REMARK ON STATISTICAL MANIFOLDS WITH TORSION

HWAJEONG KIM

ABSTRACT. Consider a Riemannian manifold M equipped with a metric g. In this article, we study a notion for statistical manifolds (M, g, ∇) , which can have a non-zero torsion, abbreviated to SMT. Then it turns out that the tensor fields ∇g and ∇g obtained from two different SMT-connections are different.

1. Introduction

Let M be a manifold with a metric g. Given a linear connection ∇ there exists a unique connection ∇^* such that

$$d(g(X,Y)) = g(\nabla X,Y) + g(X,\nabla^*Y)$$

and we then say that ∇ , ∇^* are dual connections with respect to the metric g.

A statistical manifold can be defined using the notion of dual connections, that is, a manifold (M, g, ∇, ∇^*) satisfying

$$T^{\nabla} = T^{\nabla^*} = 0$$

where the torsion of ∇ is given by

$$T^{\nabla}(X,Y) = \nabla_X Y - \nabla_Y X - [X,Y].$$

There are a few equivalent ways in which statistical manifolds have been introduced; for details we refer to [1,3,7,11].

In this article, we consider statistical manifolds whose torsions are not necessarily zero. We will use a notion of "statistical manifolds admitting torsion" as introduced in [6] and abreviate it as "SMT".

The difference between a linear connection ∇ and the Levi-Civita connection ∇^g is a (2, 1)-tensor field denoted by A, that is

(1)
$$\nabla_X Y = \nabla_X^g Y + A(X,Y).$$

The notation A is also used for the (3,0)-tensor defined by

$$A(X, Y, Z) = g(A(X, Y), Z).$$

In [5], given a SMT (M, g, ∇) with $\nabla = \nabla^g + A$, an equivalent condition for the difference tensor A is computed, see (8). In this article, we will consider the space

Received March 21, 2023. Revised May 1, 2023. Accepted June 1, 2023.

²⁰¹⁰ Mathematics Subject Classification: 53A35, 53B05, 53B15, 53C05, 53C80.

Key words and phrases: metric connection, torsion, dual connections, statistical manifold.

⁽c) The Kangwon-Kyungki Mathematical Society, 2023.

This is an Open Access article distributed under the terms of the Creative commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.

H. Kim

of A satisfying this condition and denote the space by SMT. We also consider the symmetric space of \mathcal{A}^S consisting of (3,0)-tensor fields A which are symmetric with respect to the second and third variables.

In the main Theorem, we will then construct a bijection between \mathcal{SMT} and \mathcal{A}^S . Here we observe that \mathcal{A}^S is actually the space of ∇g 's where (M, g, ∇) is a SMT, so we conclude that $\nabla g \neq \tilde{\nabla} g$ for two different SMT-connections ∇ and $\tilde{\nabla}$.

2. Preliminaries

Let (M, g) be a Riemannian manifold and $\Gamma(M)$, $\Gamma^*(M)$ the set of sections of the tangent bundle TM, T^*M , respectively.

A linear connection ∇ is then a map

$$\nabla: \Gamma(M) \otimes \Gamma(M) \to \Gamma(M)$$

with some properties and gives a way how to transport a vector field along a direction.

A metric connection ∇ is a linear connection, which gives isometries between tangent spaces by parallel transport, that is

(2)
$$V(g(X,Y)) = g(\nabla_V X, Y) + g(X, \nabla_V Y)$$

The condition (2) is equivalent to $\nabla g = 0$, since for (2,0)- tensor field g

$$(\nabla_V g)(X,Y) = V(g(X,Y)) - g(\nabla_V X,Y) - g(X,\nabla_V Y).$$

The Levi-Civita connection, denoted by ∇^g , is the unique metric connection with torsion T = 0.

The difference between a linear connection ∇ and the Levi-Civita connection ∇^g is a (2, 1)-tensor (field) A, that is, for any tangent vector fields $X, Y \in \Gamma(M)$,

$$\nabla_X Y = \nabla_X^g Y + A(X, Y).$$

Using the same notation, a (3, 0)-tensor A is defined by

$$A(X, Y, Z) = \langle A(X, Y), Z \rangle.$$

We now consider the case where isometries between tangent spaces are obtained by parallel transports with respect to two connections ∇ , ∇^* as follows.

DEFINITION 2.1 (Dual Connections). For a linear connection ∇ , the dual connection ∇^* of ∇ with respect to g is defined by

$$Z(g(X,Y)) = g(\nabla_Z X, Y) + g(X, \nabla_Z^* Y)).$$

By the expression (1) let

- (3) $\nabla_X Y = \nabla^g + A(X, Y)$
- (4) $\nabla_X^* Y = \nabla^g + A^*(X, Y).$

We can then easily check the following.

LEMMA 2.2. Given a linear connection ∇ and its dual connection ∇^* defined as above, the following equality holds:

(5)
$$\langle A(Z,X),Y\rangle + \langle X,A^*(Z,Y)\rangle = A(Z,X,Y) + A^*(Z,Y,X) = 0.$$

So, a linear connection ∇ has a unique dual connection ∇^*

3. Statistical manifolds admitting torsion

A statistical manifold in a classical sense is a torsion-free manifold with some properties.

In [6] a notion for generalized statistical manifolds is introduced. There are some well-known equivalent properties of these statistical manifolds. In this article, we take the following properties as definitions.

DEFINITION 3.1. [2, 3, 6, 8]

(i) A Riemannian manifold (M, g, ∇) is a statistical manifold if

(6)
$$(\nabla_X g)(Y,Z) - (\nabla_Y g)(X,Z) = 0,$$

for $X, Y, Z \in \Gamma(TM)$.

(ii) A Riemannian manifold (M, g, ∇) is a statistical manifold admitting torsion, (SMT) for short, if

(7)
$$(\nabla_X g)(Y,Z) - (\nabla_Y g)(X,Z) = -g(T^{\nabla}(X,Y),Z),$$

for $X, Y, Z \in \Gamma(TM)$, where T^{∇} is the torsion tensor of ∇ .

Considering the difference tensor field A as in (3), we obtain the following result.

PROPOSITION 3.2. [5,8] Given a Riemannian manifold (M, g, ∇) the following conditions are equivalent.

(i) (M, g, ∇, ∇^*) is a SMT.

(ii) Let $\nabla = \nabla^g + A$. Then it holds

(8)
$$A(X,Y,Z) = A(Z,Y,X) \text{ for } X,Y,Z \in \Gamma(TM).$$

(iii) $T^{\nabla^*} = 0.$

Here we note that a statistical manifold (M, g, ∇, ∇^*) in a classical sense is the manifold with $T^{\nabla} = T^{\nabla^*} = 0$.

We consider the (3, 0)- tensor field A as an element of $\otimes^3 TM$, identifying TM with TM^* . Then by Proposition 3.2 (*ii*), for the set of SMT's we can consider a space as follows:

$$\mathcal{SMT} = \{A \in \otimes^3 TM | A(X, Y, Z) = A(Z, Y, X)\}.$$

We also take a symmetric space:

$$\mathcal{A}^{S} = \{A \in \otimes^{3} TM | A(X, Y, Z) = A(X, Z, Y)\} = TM \otimes S^{2} TM.$$

We will then find a bijection between the above two spaces in the following theorem.

THEOREM 3.3. A bijection between SMT and A^S arises from the following:

For $S \in \mathcal{SMT}$, we associate $G \in \mathcal{A}^S$ by

(9)
$$G(X, Y, Z) = S(X, Y, Z) + S(X, Z, Y).$$

And for $G \in \mathcal{A}^S$, we associate $S \in \mathcal{SMT}$ by

$$2S(X, Y, Z) = G(X, Y, Z) - G(Y, Z, X) + G(Z, X, Y).$$

H. Kim

Proof. Given $S \in SMT$, we get $G \in A^S$ by

$$G(X, Y, Z) = S(X, Y, Z) + S(X, Z, Y) \in \mathcal{A}^S.$$

Now since $S \in \mathcal{SMT}$,

$$\begin{aligned} G(X, Y, Z) &- G(Y, Z, X) + G(Z, X, Y) \\ &= S(X, Y, Z) + S(X, Z, Y) - S(Y, Z, X) - S(Y, X, Z) \\ &+ S(Z, X, Y) + S(Z, Y, X) \\ &= 2S(X, Y, Z). \end{aligned}$$

We note that the above (9) gives a linear map for each $T_x M$, $x \in M$.

Finally, the elements of SMT and A^S are symmetric with respect to two variables, namely, first and third ones for SMT, second and third ones for A^S . So, SMT and A^S have the same dimension.

We now conclude that the mapping (9) is a bijection from \mathcal{SMT} to \mathcal{A}^S .

COROLLARY 3.4. Two different SMT-connections ∇ and $\tilde{\nabla}$ give two different and tensor fields ∇g and $\tilde{\nabla} g$.

Proof. For $\nabla = \nabla^g + A$, recall that

(10)
$$\nabla g = A(X, Y, Z) + A(X, Z, Y)$$

So, by the bijection in Theorem 3.3, we have two different tensor fields ∇g and $\tilde{\nabla} g$ for two different SMT- connection ∇ , $\tilde{\nabla}$.

Here (10) follows from

$$\nabla g(X,Y,Z) = (\nabla_X g)(Y,Z)$$

= $X(g(Y,Z)) - g(\nabla_X Y,Z) - g(Y,\nabla_X Z)$
= $\nabla^g g(X,Y,Z) + A(X,Y,Z) + A(X,Z,Y)$
= $A(X,Y,Z) + A(X,Z,Y).$

REMARK 3.5. Since $\otimes^2 TM = \Lambda^2 TM \oplus S^2 TM$ where the tensor product Λ^2 and S^2 is skew-symmetric and symmetric tensor products, respectively, we have

$$\otimes^3 TM = \mathcal{A}^M \oplus \mathcal{A}^S$$

with

$$\mathcal{A}^{M} = \{A \in \otimes^{3} TM | A(X, Y, Z) = -A(X, Z, Y)\} = TM \otimes \Lambda^{2} TM$$

So, from the bijection in Theorem 3.3 we also have a bijection between \mathcal{SMT} and $\otimes^3 TM/\mathcal{A}^M$. Note that \mathcal{A}^M is the space of A's of metric connections ∇ , that is, linear connections with $\nabla g = 0$.

References

- S. Amari, Information Geometry and Its Applications, Applied Mathematical Sciences. Springer Japan (2016).
- [2] A.M.Blaga, A. Nannicini, Conformal-projective transformations on statistical and semi-Weyl manifolds with torsion, arXiv.2209.00689vl, (2022).
- [3] O.Calin, C. Udriste, Geometric Modeling in Probability and Statistics, Springer (2013).

136

- [4] E. Cartan, Sur les varietes a connexion affine et la theorie de la relativite generalisee, Ann. Ec. Norm. Sup. 42 (1925), 17-88,
 English transl. by Magnon and A. Ashtekar, On manifolds with an affine conneciton and the theory of general relativity, Napoli: Bibliopolis (1986).
- [5] H. Kim, A note on statistical manifolds with torsion, Communi. Korean Math. Soc. 38 (2023), No. 2, 621–628.
- [6] T. Kurose, Statistical manifolds admitting torsion. Geometry and Something. (2007), in Japanese.
- [7] S. L. Lauritzen, Statistical manifolds, Differential Geometry in statistical inference, 10 (1987), 163–216.
- [8] H. Matsuzoe, *Statistical manifolds and affine differential geometry*, Advanced Studies in Pure Mathematics 57, Probabilistic Approach to Geometry (2010), 303–321.
- [9] H. Nagaoka, S. Amari, *Differential geometry of smooth families of probability distributions*, Technical Report (METR) 82-7, Dept. of Math. Eng. and Instr. Phys., Univ. of Tokyo, (1982)
- [10] A. P. Norden, On pairs of conjugate parallel displacements in multidimensional spaces, In Doklady Akademii nauk SSSR, volume 49 (1945), 1345–1347.
- [11] U. Simon, in Affine Differential Geometry, Handbook of Differential Geometry, vol. I (ed. by F. Dillen, L. Verstraelen), Elsevier Science, Amaterdam (2000), 905–961.

Hwajeong Kim

Department of Mathematics, Hannam University, Daejeon 306-791, Korea *E-mail*: hwajkim@hnu.ac.kr