• 제목/요약/키워드: Riemannian metric

검색결과 153건 처리시간 0.02초

GEOMETRY OF LOCALLY PROJECTIVELY FLAT FINSLER SPACE WITH CERTAIN (𝛼, 𝛽)-METRIC

  • AJAYKUMAR ABBANIRAMAKRISHNAPPA;PRADEEP KUMAR
    • Journal of applied mathematics & informatics
    • /
    • 제41권1호
    • /
    • pp.193-203
    • /
    • 2023
  • In view of solution to the Hilbert fourth problem, the present study engages to investigate the projectively flat special (𝛼, 𝛽)-metric and the generalised first approximate Matsumoto (𝛼, 𝛽)-metric, where 𝛼 is a Riemannian metric and 𝛽 is a differential one-form. Further, we concluded that 𝛼 is locally Projectively flat and have 𝛽 is parallel with respect to 𝛼 for both the metrics. Also, we obtained necessary and sufficient conditions for the aforementioned metrics to be locally projectively flat.

Model Reference Adaptive Control Using Non-Euclidean Gradient Descent

  • Lee, Sang-Heon;Robert Mahony;Kim, Il-Soo
    • Transactions on Control, Automation and Systems Engineering
    • /
    • 제4권4호
    • /
    • pp.330-340
    • /
    • 2002
  • In this Paper. a non-linear approach to a design of model reference adaptive control is presented. The approach is demonstrated by a case study of a simple single-pole and no zero, linear, discrete-time plant. The essence of the idea is to generate a full non-linear model of the plant dynamics and the parameter adaptation dynamics as a gradient descent algorithm with respect to a Riemannian metric. It is shown how a Riemannian metric can be chosen so that the modelled plant dynamics do in fact match the true plant dynamics. The performance of the proposed scheme is compared to a traditional model reference adaptive control scheme using the classical sensitivity derivatives (Euclidean gradients) for the descent algorithm.

ON DEFORMED-SASAKI METRIC AND HARMONICITY IN TANGENT BUNDLES

  • Boussekkine, Naima;Zagane, Abderrahim
    • 대한수학회논문집
    • /
    • 제35권3호
    • /
    • pp.1019-1035
    • /
    • 2020
  • In this paper, we introduce the deformed-Sasaki metric on the tangent bundle TM over an m-dimensional Riemannian manifold (M, g), as a new natural metric on TM. We establish a necessary and sufficient conditions under which a vector field is harmonic with respect to the deformed-Sasaki Metric. We also construct some examples of harmonic vector fields.

GENERIC LIGHTLIKE SUBMANIFOLDS OF AN INDEFINITE KAEHLER MANIFOLD WITH A NON-METRIC 𝜙-SYMMETRIC CONNECTION

  • Jin, Dae Ho
    • 대한수학회논문집
    • /
    • 제32권4호
    • /
    • pp.1047-1065
    • /
    • 2017
  • The notion of a non-metric ${\phi}$-symmetric connection on semi-Riemannian manifolds was introduced by Jin [6, 7]. The object of study in this paper is generic lightlike submanifolds of an indefinite Kaehler manifold ${\bar{M}}$ with a non-metric ${\phi}$-symmetric connection. First, we provide several new results for such generic lightlike submanifolds. Next, we investigate generic lightlike submanifolds of an indefinite complex space form ${\bar{M}}(c)$ with a non-metric ${\phi}$-symmetric connection.

THE CHERN SECTIONAL CURVATURE OF A HERMITIAN MANIFOLD

  • Pandeng Cao;Hongjun Li
    • 대한수학회보
    • /
    • 제61권4호
    • /
    • pp.897-906
    • /
    • 2024
  • On a Hermitian manifold, the Chern connection can induce a metric connection on the background Riemannian manifold. We call the sectional curvature of the metric connection induced by the Chern connection the Chern sectional curvature of this Hermitian manifold. First, we derive expression of the Chern sectional curvature in local complex coordinates. As an application, we find that a Hermitian metric is Kähler if the Riemann sectional curvature and the Chern sectional curvature coincide. As subsequent results, Ricci curvature and scalar curvature of the metric connection induced by the Chern connection are obtained.

ON THE BONNET′S THEOREM FOR COMPLEX FINSLER MANIFOLDS

  • Won, Dae-Yeon
    • 대한수학회보
    • /
    • 제38권2호
    • /
    • pp.303-315
    • /
    • 2001
  • In this paper, we investigate the topology of complex Finsler manifolds. For a complex Finsler manifold (M, F), we introduce a certain condition on the Finsler metric F on M. This is a generalization of Kahler condition for the Hermitian metric. Under this condition, we can produce a Kahler metric on M. This enables us to use the usual techniques in the Kahler and Riemannian geometry. We show that if the holomorphic sectional curvature of $ M is\geqC^2>0\; for\; some\; c>o,\; then\; diam(M)\leq\frac{\pi}{c}$ and hence M is compact. This is a generalization of the Bonnet\`s theorem in the Riemannian geometry.

  • PDF

GRADIENT RICCI SOLITONS WITH HALF HARMONIC WEYL CURVATURE AND TWO RICCI EIGENVALUES

  • Kang, Yutae;Kim, Jongsu
    • 대한수학회논문집
    • /
    • 제37권2호
    • /
    • pp.585-594
    • /
    • 2022
  • In this article we classify four dimensional gradient Ricci solitons (M, g, f) with half harmonic Weyl curvature and at most two distinct Ricci-eigenvalues at each point. Indeed, we showed that, in a neighborhood V of each point in some open dense subset of M, (V, g) is isometric to one of the following: (i) an Einstein manifold. (ii) a domain in the Riemannian product (ℝ2, g0) × (N, ${\tilde{g}}$), where g0 is the flat metric on ℝ2 and (N, ${\tilde{g}}$) is a two dimensional Riemannian manifold of constant curvature λ ≠ 0. (iii) a domain in ℝ × W with the warped product metric $ds^2+h(s)^2{\tilde{g}}$, where ${\tilde{g}}$ is a constant curved metric on a three dimensional manifold W.

ON THE BIHARMONICITY OF VECTOR FIELDS ON PSEUDO-RIEMANNIAN MANIFOLDS

  • Amina Alem;Bouazza Kacimi;Mustafa Ozkan
    • 호남수학학술지
    • /
    • 제45권2호
    • /
    • pp.300-315
    • /
    • 2023
  • In this article, we deal with the biharmonicity of a vector field X viewed as a map from a pseudo-Riemannian manifold (M, g) into its tangent bundle TM endowed with the Sasaki metric gS. Precisely, we characterize those vector fields which are biharmonic maps, and find the relationship between them and biharmonic vector fields. Afterwards, we study the biharmonicity of left-invariant vector fields on the three dimensional Heisenberg group endowed with a left-invariant Lorentzian metric. Finally, we give examples of vector fields which are proper biharmonic maps on the Gödel universe.

HYPERELASTIC LIE QUADRATICS

  • Ozkan Tukel, Gozde;Turhan, Tunahan;Yucesan, Ahmet
    • 호남수학학술지
    • /
    • 제41권2호
    • /
    • pp.369-380
    • /
    • 2019
  • Inspired by the problem of finding hyperelastic curves in a Riemannian manifold, we present a study on the variational problem of a hyperelastic curve in Lie group. In a Riemannian manifold, we reorganize the characterization of the hyperelastic curve with appropriate constraints. By using this equilibrium equation, we derive an Euler-Lagrange equation for the hyperelastic energy functional defined in a Lie group G equipped with bi-invariant Riemannian metric. Then, we give a solution of this equation for a null hyperelastic Lie quadratic when Lie group G is SO(3).