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Model Reference Adaptive Control Using Non-Euclidean
Gradient Descent

Sang-Heon Lee, Robert Mahony, and I1-Soo Kim

Abstract In this paper. a non-linear approach to a design of model reference adaptive control is presented. The approach is demon-
strated by a case study of a simple single-pole and no zero, linear, discrete-time plant. The essence of the idea is to generate a full
non-linear model of the plant dynamics and the parameter adaptation dynamics as a gradient descent algorithm with respect to a
Riemannian metric. It is shown how a Riemannian metric can be chosen so that the modelled plant dynamics do in fact match the
true plant dynamics. The performance of the proposed scheme is compared to a traditional model reference adaptive control scheme
using the classical sensitivity derivatives (Euclidean gradients) for the descent algorithm.
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I. Introduction

Model reference adaptive control (MRAC) is one of the
main approaches to the adaptive control of servo systems. In
MRAC. the desired performance of a closed-loop system is
specified in terms of a reference model and the controller pa-
rameters are adjusted to minimise a given error function.

Historically. the MIT rule [1] was the parameter adaptation
mechanism used for the first published application of MRAC.
In this paper. the control parameters are updated according to
a continuous-time ordinary differential equation (ODE) gener-
ated by setting the time derivatives of the parameter equal to
the negative gradient of a performance index. The perform-
ance index used was the integral squares of the response error,
the difference between the actual closed-loop system output
and the reference model output. This gradient is commonly
known as the sensitivity derivative of the system. To balance
between system stability and the adaptation speed, an adapta-
tion gain is introduced into the control parameter ODE. This
adaptation gain plays a crucial role in system stability, ensur-
ing that the dynamics induced in the controller by the adapta-
tion rule do not interfere with the system dynamics. Unfortu-
nately. it is usually not possible a priori to choose a suitable
value for the adaptation gain. Consequently, the MIT rule for
the adaptation of control parameters suffers from a fundamen-
tal stability problem.

Among many subsequent approaches to adaptive control,
the schemes that retain the closest resemblance to the MIT
rule are those based on the Lyapunov design [2][3]. These de-
signs have the advantage that they take into consideration of
the combined system and parameter adaptation dynamics and
design a controller to guarantee stability of the system [4][5].
(A recent overview of design procedure is given in [6-Chapter
5]) However. it has proved difficult to generate valid
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Lyapunov functions for the full system dynamics, and the
classical Lyapunov design relies on the assumption that the
adaptation dynamics do not evolve quickly compared to the
system dynamics. Once again the gain of the adaptation dy-
namics plays a crucial role in determining system stability. To
provide an estimate of when MRAC systems designed using
Lyapunov techniques are practical, several authors [7][8] have
used the averaging theory to produce rigorous stability results.
Classical adaptive control designs were based around linear
design techniques. However. work in the late eighties
[91[10][11] showed that highly non-linear and even chaotic
behaviour could result from relatively simple MRAC schemes.
This perspective has led some people to view MRAC as a
fully non-linear design problem. Authors [12[13][14][15] have
made some advances in explicit non-linear adaptive control
design methodology. However. much of this design methodol-
ogy is still based around Lyapunov concepts. A fundamental
limitation of Lyapunov theory is the difficulty of finding a
suitable Lyapunov function for a given system.

In this paper, we present a non-linear approach to the design
of model reference adaptive control schemes for linear sys-
tems. In our approach. we begin with a full non-linear system
model, combining the non-linear parameter adaptation dynam-
ics and the linear plant dynamics as a gradient descent algo-
rithm with respect to a general Riemannian metric. At each
step, the Riemannian metric is chosen so that the modelled
plant dynamics do in fact match the true plant dynamics. Once
the Riemannian metric is fully specified. the adaptation dy-
namics are uniquely defined. In this way. the adaptation dy-
namics induced in the adjustable parameters incorporate the
knowledge of the true plant dynamics.

An advantage of the proposed design procedure is that the
adaptation gain no longer plays a role in the adaptive mecha-
nism. This is significant because in classical MRAC schemes,
the non-linearities induced from the coupling of parameter
adaptation and plant dynamics is negligible only when the ad-
aptation gain is chosen smaller than would be desired. As a
consequence. classical adaptation schemes generally result in
very slow adaptation of the closed-loop systems. Conversely.
the proposed scheme achieves fast convergence of the adap-
tive parameters by subsuming the adaptation gain into the
Riemannian metric and incorporating knowledge of the plant
dynamics in the adaptation rule.
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The design procedure is demonstrated by a case study of a
simple single-pole, strictly proper, discrete-time plant. Since
our aim in this paper is to study a new adaptation law in a
simple situation, we make a number of strong assumptions on
plant structure. We assume that the system is a deterministic
model with no noise. The reference signal is taken to be a step
function and the plant and the reference model are both strictly
stable. In addition we assume that the high frequency gains of
plant and reference model have the same sign.

This paper consists of seven sections including the introduc-
tion. Section 2 describes the explicit formulation of the
MRAC scheme considered. In Section 3, a classical Euclidean
gradient adaptation scheme using the MIT rule is reviewed.
Section 4 shows how to form a non-linear adaptive system
from the combination of parameter adaptation dynamics and
the plant dynamics in the form of a non-Euclidean gradient
descent algorithm. In Section 5, the problem of finding a posi-
tive definite matrix which defines the Riemannian metric re-
quired for the adaptive law is presented as a semi-definite pro-
gramming problem. In Section 6, the performance of the pro-
posed MRAC scheme is compared to a classical MRAC
scheme. Section 7 reviews the contribution of the paper and
outlines the advantages and limitations of the proposed
scheme.

11. Problem formulation

In this section, a MRAC system for a simple linear plant is
presented. Controller design is done on the assumption that the
plant to be controlled has a single pole and no zero, and is a
linear, stable. discrete-time system. The classical approach to
MRAC in the discrete-time domain is shown in Fig. 1. The
performance specifications are given in terms of a reference
model, G, along with the reference input signal, r(k). Based
on an estimate of the plant parameters, the certainty equiva-
lence principle is used to design a feedback controller, C. The
parameters are updated at each time instance k. according to
the mismatch error, e(k), between the actual closed-loop sys-
tem output, y(k), and the reference model output, y(4)
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Fig. 1. System block diagram.

In this paper, the system is assumed to be deterministic with
no noise. The reference signal. r(k). is taken to be a step func-
tion. As a result. the adaptation algorithm is not persistently
excited and the consequence of this choice is discussed in later
analysis. In addition, we assume that the plant and the refer-
ence model are both strictly stable first order plants with rela-
tive degree one. It is assumed that the sign of the high fre-

quency gain of the plant is known and is the same as that of
the reference model.

The discrete-time plant, G, to be controlled and the refer-
ence model, G representing the control objective are given
by
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where a.b,7 .5 €% are the unknown plant parameters and
the reference model parameters respectively.

Equivalently, the difference equations for the closed-loop
system output and the reference model output are

d(&)=blr(k= 1)+ u(k=1)| = gy (k= 1), (2)
and
F(k) = br(k—1) =3 (£ ~1). (3)

The controller design is based on a simple pole/zero place-
ment technique using the certainty equivalence principle; the
closed-loop transfer function of the true plant is

Y(N) G(Q)

“
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where C(z) is the Z-transform of the controller (k). Using the

certainty equivalence to replace the plant G(z) in Eq.4 with an

estimate, G(3) and equating with the reference model behav-

iour yields

z_ G
[1=G(z)C(z)]
Substituting Eq. 1 into Eq. 5 and solving for C(z) yields
- . T A
C(z) _ (b—-b)+(ab - ab):z ’ 6)

bbz™!
where. 4,6 €% are the estimates of the unknown plant pa-
rameters.

A consequence of the simple design method used in here is
that the controller C'(z) is non-causal. Since such a control
strategy Is impossible to apply in practice. it is necessary to
modify Eq. 6 to yield a causal controller. The option taken is
to include a stable. low-pass filter of relative order 1 in the
feedback loop

_x(1-9)

M(z) ==

(7

where 0 <~ < 1. Thus, the difference equation of the final
control action is

gk — 1y=ptigk =2y 4 -7 ”b_l;x.l}yk_l +(&A-rb‘a5u)_vk72—l.
(== E ) (=) [ik-2)

(&)

Remark 2.1 The low-pass filter. Eq. 7, can be interpreted

in two ways. Firstly. since the filter has relative order 1. the
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overall relative order of the controller is zero and the control
law can be implemented as a causal operator. Secondly, and
perhaps more importantly, the designed controller C(z) of Eq.
6 is a PD (Proportional Derivative) controller. This is evident
by rewriting Eq. 6 in the form
)= 2 (—byz - 1y (b=b)*(@b=ab)
bb b

Such controllers are highly susceptible to high frequency noise
due to the derivative operation. In practice, the derivative op-
erator is usually combined with a low-pass filter to ensure
good behaviour. This is exactly the form of the new control
action M(z)C(z). Even though the original control action gen-
erated by C(z) is modified by the low-pass filter M(z), the con-
trol action from M(z)C(z) still results in the same steady-state
behaviour as Cfz).

I11. Classical Euclidean gradient adaptation scheme
In this section, a brief review of the MIT rule of the adap-
tive control is given in the context of the model considered.
We refer to this adaptation rule as a Euclidean gradient adap-
tation scheme.
The key principle of MRAC design is to use an error,
the output mismatch error in this paper,

e(k):= y (&)~ y(k), ©)

to measure the performance of the adaptive algorithm. Con-
sider taking a cost function,

ORESFOS (10)

where éH = (21[(41,1;k_1) e R is the vector of parameter es-
timates at time k-/. This cost function is used in the MIT rule
of the original MRAC scheme [1], [6, Chapter 5]

The mismatch error e(k) is obtained from Eq.'s 2 and 3. Ex-
plicitly, writing e(k) to display its dependence on the parame-

ters. a, ,,b,_,, yields

(&) = br(k—1)~zp(k—1)—b

[k — 1) g — 2y Qo (0 = DotE=D)
b, | +(a, b —ab, ) y(k—2)

+ote-y. D

Note that u(k-2), vk-1) and y(k-2) are independent from the
(k-1)th parameters, a‘H,bAt_, .

The partial derivatives of eck) with respect to 4,_, and
b, are

9B Ly,
dd,_, -1
%) _ b U=Diyk—1y+a, vk -2)).

b, b by,

The adaptation mechanism for the parameter estimates vec-
tor is given by the discrete-time gradient descent algorithm;

P 8D, A Oe(k
gkzekl—sk‘#ﬁzgk-l—s&e(k) ~()

) aé&~l k-l (]2)

where

Oe(k)
de(k) | da,, |_| —(1~,V)y(kiz) x (13)
aék;\ M 5_(1—7)[}’(/(—1)4—(1‘4);(/{_2)] 1;’\_[

ob, k-1

and §, is the adaptation gain. This is just a discrete-time
version of the MIT rule [6, Chapter 5].

Remark 3.1 Since the true plant parameters a and b are
unknown, some approximations are required to compute the
gradient in practice. In the adaptive scheme, the model
4,.,and b,_, are used to replace the unknown plant parame-
ters a and b respectively. Also. to have the correct sign of the
adaptation gain S, , the sign of the high frequency gain of

plant 4 is used and the term “'sign (AL) ” is substituted —b— .
£—1 &1

Since an under exciting input reference signal is considered
and the goal in MRAC systems is simply to force the error,
e(R)= J(£)— y(k) to converge to zero. it is not necessary
that the adjustable parameter values, a,b. should converge to
the true plant parameters a,b, respectively. Rather. it is ex-
pected there is a whole set of the possible parameters ( [7,/;) for
which the error, ¢(£)=0. By assuming asymptotic conver-
gence of the adaptive parameters to this set and then analysing
the closed-loop difference equations. one finds the explicit
equation for this set to be

(a4 Vb, , —a, b—b=0. (14)

The line defined by Eq.14 is termed as /7O behaviour line. It
should be mentioned that since e(k)=0 in the steady-state with
(21,13) parameters on the 1/0 behaviour line. the adaptation dy-
namics are also zero. Thus, for a single step change in the ref-
erence input, the system should settle back into steady-state
behaviour with constant controller coefficient after a short
transient period.

Intuitively, it is expected that the adaptation gain §, in Eq
12 has a significant effect on the parameter convergence rate,
i.e. parameters will converge to I/O behaviour line slowly for
small §, and quickly for large S§,. In practice, however,
for large §, the adaptation behaviour becomes unpredictable
and for small §, convergence becomes sluggish. This ob-
servation is not conclusive evidence of the inadequacy of the
scheme under normal operating conditions. but does tend to
reduce confidence in the method.

Practically, MRAC schemes are used when there is a time-
scale separation between the plant dynamics and the adaptive
dynamics. Thus, the non-linearities introduced by the coupling
of adaptation and plant dynamics are negligible, and the gradi-
ent, Eq. 13, maintains the properties expected in gradient de-
scent algorithms. This requirement tends to force a choice of
adaptation gain, §,, smaller than would be desired and re-
sults in closed-loop systems with very slow transient behav-
iour. To overcome this difficulty, we have considered to design
the adaptation dynamics to incorporate knowledge of the true
plant dynamics.
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IV. Non-Euclidean gradient adaptation schéme

In this section, a non-linear approach to the design of the
adaptation algorithm in MRAC scheme is presented. In the
proposed approach, the state of the plant is combined with the
parameter adaptation dynamics to form a state for the full non-
linear system. Taking the gradient of the cost function &, Eq.
10, with respect to a Riemannian metric, a gradient descent
algorithm on the full non-linear state is induced. At each step,
the Riemannian metric is chosen so that the modeled plant dy-
namics do in fact match the true plant dynamics. Once the
Riemannian metric is fully specified, the adaptation dynamics
are uniquely defined. In this way, the adaptation dynamics in-
duced in the adjustable parameters incorporate the knowledge
of the true plant dynamics. General background on Rieman-
nian geometry can be found in [16, Appendix C.10]

The full state of the system given in Fig. 1 is defined to be

(&)

&=\ a, | (15)
by

Note that the state of the adjustable parameter estimates
vector § =(4,6,) in the classical MRAC scheme is %
while the state of parameter vector é:  in the proposed
scheme is R°. The y(k) state added in the proposed scheme is
just the state of the linear system dynamics.

The cost function @ is the same as used in Section 3, Eq.
10. However, now it is considered as a cost on the full state
space $: R’ =R

BE, )= (k) (16)
where e(k) is given by Eq. 9 and ¢,_, is the full state of the
system at time instance &-/.

To define the non-Euclidean gradient vector of ®(¢, ), a
Riemannian metric is introduced in #°. A Riemannian metric
is a bilinear, positive definite map for each ¢, , € %°.

(1), R =9,

which varies smoothly with &, . For 7,0 €%, tangent
vectors of 3* at &, are then

<<T],I/>>£k LT WVI..QEZI,IC ,Qg:l‘ € R¥I, (17)

where Q) :Qér1 > 0 (positive definite) and Q' denotes
the inverse of Q) .

Let D®(,_;) denote the vector of partial differentials of
(&, _, ) with respect to the full state, i.e.

T
_| 0B, 0RE,.) 9P, )
D)= k—1)  da,, b

£=1

The gradient of ®(¢, ), denoted grad ®(&,_,) ., with respect
to the choice of a Riemannian metric is uniquely generated as
the solution of [17, Page 83]

(X gd®(E, ), =X"DIE.,). (18)

Solving Eq. 18 yields
grad®(§, ;)= .le, ‘1)(1)(5,6_1 )- (19)

Note that £, =~ is dependent on the states E .

Remark 4.1: Aslong as Q.  is positive definite, then in-
stantaneously, the cost ®(¢,_) is decreasing. This becomes
clearer if a continuous-time adaptation law is studied. Con-
sider the continuous-time gradient descent adaptation law

£'(1) = —grad®(&(1)),

then. the directional derivative of the cost @ in the direction
of flow of &(r) is

. d ;
@' = LO(E(r) = ~DUE() gradd =
—(grad@,grad@) = —||grad<I>H2 <0. (20)

Thus, the control parameters, 4(7),5(¢), must evolve such
that the cost ®(&(#)) is decreased. Of course, it is necessary
to ensure that y(z) evolves to match the true dynamics of the
plant by utilising the freedom of choice in Q. This is a
difficult problem in itself and in this paper we consider dis-
crete-time plants and present a method of determining a suit-
able positive definite matrix Q. .

The explicit equations for the entries of D®(E, ) are
computed as partial derivatives of the difference equation for
e(k), Eq. 11, with respect to the (k-/)'th parameters y(k-/),
27,@7],5,@4, respectively. The second and the third entries of
D®(E,_,) are obtained using Eq. 13. For the additional state,
the partial differentiation of the cost function ®(£,_,) with

L, 9% . :
respect to y(k-1), Bk 1) is required. One has,
6®(§k~1) :e(/é) 8€(/é> R (2])
YHlk—1) k1)

where

de(k) | ab,, bey b
=l-—— I—T 1_ ~
50T { PR = y)LH

As described in Section 2, the model estimates 4, , and

b

£—1

and b respectively. Also, the sign of the high frequency gain of

can be substituted for the unknown plant parameters a

plant b is assumed to be known, yielding

0P(g; 1)
(k=1

by b, b
= e(k){szgn(f)ak_, (- %)(l - y)}szgn(ls ).

k-1
The gradient descent algorithm induced by Eq. 19 is simply
§ =& —s,grad®(§,_)=§,_, — %Qg, ID(I)(&H)a (22)

where 5, is the adaptation gain.

Note that since the only constraint on Q.  at this stage is
that @,  is positive definite, then, without loss of generality.
one can write

5., = L, -
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The gradient descent algorithm becomes
&= §s ‘.Q@ . D®E, ), (23)

with unit step size.

Remark 4.2: One of the advantages of the proposed
scheme is the fact that the adaptation gain size no longer plays
a role in the scheme. This is significant because, as mentioned
in Section 2, the adaptation gain §, affects the convergence
rate of the adjustable parameters and in turn, the stability of
the system. Instead of guessing the size of §, to keep the
system stable. the adaptation speed is automatically consid-
ered in the calculation procedure of the positive definite ma-
trix Q. by incorporating the true plant dynamics. This guar-
antees fast convergence.

Remark 4.3: A disadvantage of the proposed scheme (cf.
Eq. 23) is that there is no a priori guarantee that the cost
D(E,..) <B(E,) . Recalling that for the continuous-time adap-
tation rule. Eq. 20, one has &' <0. For §, sufficiently
small in Eq. 22, an equivalent result should hold. However, the
necessity of subsuming §, into Q. leads to potential sta-
bility problems. Understanding this issue is an area of ongoing
research.

Consider the dynamics induced in the state y(k) by Eq. 23.
These dynamics can be written

(&)= y(k—1)— E[Q, DL(E,_), (24

where E, €%’ is the unit vector with a one in the first ele-
ment and zeros in the other elements. Given that y(k) and yk-
1) are measured directly from the plant output, then Eq. 24
generates a linear constraint on 0,

E/ Oy, D)= y(k—1)— y(4). (25)

As long as Q, satisfies Eq. 25, the first entry of the in-
duced gradient dynamics in Eq. 23 exactly replicates the true
plant dynamics.

This leads to an optimisation problem that lies at the heart
of the proposed scheme.

Problem 4.1: At each time instance k, find a matrix Q.
which depends smoothly on &,_, satisfying

I Q. >0 and Q. =0, (Positive definite).
2. B0, DO, )= y(k—1)— y(&)(Linear Constraint)

12,
and such that the closed-loop system shows desirable behav-
iour.

Remark 4.4: Requirements 1 and 2 of Problem 4.1 are the
practical requirements that ensure the gradient descent algo-
rithm replicates the true plant dynamics and displays gradient
characteristics. These constraints. however, leave a great deal
of leeway in choosing 0,  to ensure the closed-loop system
shows desirable behaviour.

V. Determining an optimal positive definite matrix

In this section, a specific approach to solve the optimisation
problem, Problem 4.1, is presented. The approach relies on
choosing Q. to minimise a one-step-ahead estimate of the
cost & ofEq. 16.

A natural approach to finding Q. is to generate a one-step-
ahead estimate of the output, j*(#+1). based on a particular
2., and then minimise the cost ‘ Y (k+1)—Jk+ 1)““ sub-
ject to the requirements of Problem 4.1. Ensuring that O,
satisfies Eq. 25 should not be difficult as this is simply a linear
constraint on symmetric matrix space. Dealing with the posi-
tive definite constraint forces one into the realm of semi-
definite programming. Following the lead of recent develop-
ment of semi-definite programming [18]. we introduce the

cost function

£ 1

W (0 ) =]y k0= T+ —elnwden( @y, ). (26)

where j°(£+1) is one-step-ahead estimation of output
y(k+1) and © s the estimate of Q, . Here, det( Of ) is
the determinant of the matrix ©Q; ~and J(&+1) is the out-
put of the reference model which can be easily obtained from
Eq. 3.

Remark 5.1: The first term in Eq. 26 is the desired quad-
ratic cost term while the second term is a self-concordant bar-
rier function [18][19] added to ensure the minimum of
Wi (25, ) always lies in the set of positive definite matrices.
By choosing ¢ sufficiently small, the influence of the barrier
function on the quadratic cost function is negligible except in
the neighbourhood of the boundary of positive definite matri-
ces.

When 0, needs to be determined, the current and the
previous value of output y(k).yrk-1), reference model output
(&), y(£—1), input r(k).r(k-1), and error e(k) as well as the
previous values of control action u¢k-/) and the adjustable pa-
rameter vector 4, , and 5,_, are all known. In addition, the
derivative of the cost, D®(E, ,), is also available.

The one-step-ahead output estimation j)*(£+1) is ob-
tained using the one-step-ahead estimation of control action to
the system, #,(£),

Pk +1) = B (@ (k) + r(k)) - &y (k). @27

The control action 7#,(&) is generated from the difference
equation for the control, Eq. 8,

R -l ; cr fe ,
u“(k):yu(k—l)+(gl;zl)[(b—b{)y(k)+(af_b—ab;)y(k—l)]‘

k

(28)

where 4, and b, are the one-step-ahead estimates of
model parameters based on the gradient descent algorithm
generated from the Riemannian metric given by the matrix
Q. >0.Equation 23 yields

[ 7

a; =a;, _E;‘Qg‘,l DO, ), (29)
and
b =b,, —E1 Q¢ DO(E,.), (30)

where E, and E, are the unit vectors with a one in the
second and third elements respectively.

To solve Problem 4.1, we proceed by deriving a gradient
descent algorithm on the set of positive definite matrices satis-
fying the constraints of the Problem 4.1. To find the gradient
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of W (2 ). consider the Euclidean metric on the positive
definite matrices,

<;/,y> = te(s" ),

where #=u4" ,p=0" 0,0 €R™ . This is just the metric on
the positive definite matrices inherit as an open set of symmet-
ric matrix space.

Using this metric along with the definition of gradient, Eq.
18, yields

(% mat, (2 )= wXTgaat, (g y=p¥ |, 1%}, G

where DU [X] is the directional derivatives of

|~QEL
V¢, indirection X evaluated at the point Q¢ . This is given
by'

DY |, [X]=205 k+ =5k +1)

D3+ =Tk + D), [X]—ee(X (2 )7,

orasonly j'(4-+1)contains O

DYWL 1y, [X1= 2] (ke D=5+ DI Gk, [X]-etr(XT Q5 )7

(32)

Rewriting  )'(4£+1) in terms of &,f and [, one has an ex-
plicit form for Dy*(£+1)| , |X]| as follows

2,

DY (k+ 1), [X]=

(b =) 5(k)

D /3;[7u(/c—1)+r(/e)]+<—1;l) T A
@k —ab) k- 1)

b

- 52)’0@)]

As shown in Eq.'s 29 and 30, #, and 4, are the only
terms dependenton  ©; . Thus,

LY (R + 1)), 1X]= I XDE )]ya(k = 1)+ (&) + 1 XDP(E, 1) y(#)

AU XOBE, )0+ [T XDBE, )+ T XDB(E, )] k- D),

or,

DY+ DI, 1X]

= %u{xf[mp(g OET 4+ 1, DBE, ‘)T]}{f[w(@ — 1)+ ()] + (I;T”[‘;(k) + (k= 1)]}
= [

+u{ X7 [DBE, DET+BDRE )T a0 - (1 k- 1)

[N

where D®(E, )7 s the transpose of DO, ,).

By substituting the above equation into Eq. 32 and comparing
with Eq. 31 the gradient of the cost function is obtained ex-
plicitly,

grad¥ (G ) =[5 (k1)=& +1)

[I)(I)(g_ D+ EDDE ) ]‘—[qa(kf1)+r(/a)]wh——(li_’))[»)'(é)+E)(k~.—l)]’
b —(Z, )
H{DBE L+ EDUE ) | ==k = 1]

(33)

The gradient, grad ¥, (¢ ), gives the optimum descent
direction of the cost W, (©; ) on the set of symmetric ma-

' Here, we use the fact that In(det( ) L, [X]= (X (00 7h
-t e -
[18. Page 70].

trices. Due to the barrier function, a steepest descent algorithm
based on a descent direction, grad Wi (Q; ). and initialised
with a positive definite matrix will never evolve outside the
set of positive definite matrices. It is now necessary to ensure
that the gradient descent direction also satisfies the linear con-
straint, Eq.25. This is achieved by projecting grad ¥y (2 )
orthogonally onto the tangent space of the linear space,

LE, )={0; |E Q. DUE )= 3k—1— &)},

to generate a constrained descent direction satisfying Eq. 25.
The tangent space of the linear space L(§,_,) is

L& )="T, LE.)={XEXDeE )=0}. (4)

Taking the projection of W¢ (& ) onto T L(, ).
e e (79

one generates a constrained descent direction satisfying Eq. 25
The projection operator is denoted

P,

L& ) R — TQ&_ ‘L(Elc—1)>

and an explicit form for P, . , is computed in Appendix A.
The final result required for an effective optimisation pro-
cedure to solve Problem 4.1 is an initial condition satisfying
the constraints. An explicit method for calculating such a ma-
trix is given in Appendix B.
To conclude this section, we give the optimisation proce-
dure used to generate O, .
Algorithm 5.1: Optimisation algorithm to determine Q, .
0: Input the known output y(k),y(k-1), reference model
output  J(&), 3(£—1), input r(k), r(k-1), error e(k), con-
trol u(k-1), and parameter estimates ék_l =(&k—155k—1)
as well as the derivative of the cost D®(£,_,) to the al-
gorithm.
1: Generate the initial positive definite matrix ©; (0)
satisfying the linear constraint Eq. 25 (See Appendix B.)
2:Let e=1 inEq.26andset ;=0.
3: Compute grad¥; using Eq. 33 and the projection
P, ¢ ,(grad¥; ). (The projection is taken to ensure the

linear constraint (Eq. 25) is satisfied. See Appendix A.)
4: Compute == min,, Uy {24 (/)= aP, . (grad¥} )}.

(Use the MATLAB optimisation toolbox.)
5: Set L. +h= 2 () —aPy g \)(gmdqj;‘)‘

6: Compute the projection ¢ (/+1)=P,, 0 (j+1),
the orthogonal projection onto L(£, ) (cf. Appendix
A) to compensate numerical error.

7: If j is divisible by 5, let e =10""e.

:If e=10"° goto 9. Else j=j+1, goto 3.

P O =0 (j+1),this matrix always satisfies the re-

quirements of Problem 4.1.
Remark 5.2 Note that the computational cost of calculating

O, is significant. Simulations indicate that this calculation

can be achieved in 2-3 seconds for the plant considered®. It is

O e

? Calculations were done using the MATLAB optimisation toolbox on
a Sun UltraSPARC I machine, clock speed 167 MHz
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expected that by improving the computational efficiency of
the optimisation algorithm, this computational cost can be sig-
nificantly reduced. As a consequence, the authors expect that
the proposed method should be applicable to most process
control problems. In contrast. the computational complexity is
likely to rule out applications in telecommunications.

VI. Simulation results and discussion
In this section, the results of simulations of both the classi-
cal and proposed model reference adaptive control systems are
presented. The simulation indicates several desirable features
of the proposed algorithm, though there are still unanswered
questions in the application of this method, such as developing
a full understanding of its stability properties. Simulations of
numerous examples have shown, however, that the proposed
scheme displays good convergence properties.
For this simulation. the plant and reference model transfer
functions were chosen to be

—0877" = —-0.87”" 5 —0.277"
Gi)=———,G(z)=——— and G(z)=——
®=1z 0.3z ) 14065 @ 140457

As mentioned before, the choice of adaptation gain for the
classical MRAC system is important. The trade-off between
the system stability and the parameter convergence speed was
examined for various gain values. After several trials, a fixed
adaptation gain s, =0.2 for all time instance & has been cho-
sen for this example. In both schemes, the cost function

1 B
@:;e(/é)‘ is used. The value of 7Y in the low-pass filter,

Eq. 7, was chosen to be 0.9.

A step input was used as the reference command input. Be-
cause of this. the parameter estimates need not approach their
true plant values, but should converge to the I/O behaviour
line (cf. Eq. 14).

The simulation results are presented in Figs 2 to 4. In the
Figs of parameter estimates evolution, Fig. 2, the dotted line is
the I/0 behaviour line and the contour lines are closed-loop
system stability measure lines. These contour lines enclose
regions in parameter space where the largest absolute value of
a pole of the closed-loop system is less than or equal to a
marked contour value.

In both the classical and proposed schemes, the conver-
gence to the 1/0 behaviour line seems acceptable. However,
the relative difference in performance is clearly shown in Fig.
3. Here, the log plot of error versus time is given and the ex-
tremely rapid asymptotic convergence of the proposed scheme
is displayed. In the both schemes, the adaptation scheme is
only initiated at time k=4 to avoid initialisation difficulties.
The initial condition is chosen in an unstable region of pa-
rameter space and consequently, a short transient is observed
in both schemes. Observe in Fig. 3(b), that immediately the
parameter adjustment is initiated, the error is stabilised and
quickly decreased. Conversely, in the classical MRAC scheme
the small adaptation gain restricts the rate of adaptation, lead-
ing to a larger transient before convergence. Moreover, the
adaptation gain also limits the asymptotic rate of the conver-

gence. Note that increasing the magnitude of the adaptation
gain for the classical scheme leads to stability problems.
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Remark 6.1 In fact, for the first two or three steps of the
proposed parameter adjustment dynamics, the Riemannian
metric ng chosen is nearly singular and has a large condi-
tion number. This leads to the large jumps in parameter values
observed in Fig. 2(b). In most examples, such jumps are ad-
vantages since they quickly bring the parameter values into a

stable region in which the asymptotic properties of the control
algorithm are displayed. However, occasionally, the ill-
conditioning in  ©, leads to poor adaptation and repeated ill-
conditioning of O, ,Q, . ...etc. In these situations. the pro-
posed scheme may display stability problems. This issue is an
area of ongoing research.

Fig. 4 is the plot of control action versus time. It is clear that
the proposed scheme offers significantly faster convergence to
the I/O behaviour line without an increase in the control effort.

VII. Conclusion

In this paper, we have developed a new non-linear approach
to the design of adaptive control schemes based around the use
of non-Euclidean gradient descent algorithms. The proposed
scheme has the advantages that the adaptation gain term no
longer plays a dominant role in the system stability since it is
subsumed into the Riemannian metric calculation. This results
in significantly faster asymptotic convergence of parameters
and more flexibility in the transient response of the closed-
loop system. The key contributions of the paper are; the for-
mulation of the gradient descent algorithm in such a way as to
incorporate the true plant dynamics and the development of a
criterion and method to determine suitable positive definite
matrices for the adaptation mechanism. Simulations have
shown that the parameter convergence of the proposed scheme
is much faster than the classical MRAC scheme. Further work
is required to investigate stability issues as well as the gener-
alisation to continuous-time plants and more general system
models.
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Appendix A: Projection operator

Let L be the affine subspace of symmetric matrices in

R given by
L ={M|u(A"MB)=},

where 4 and B are any nonzero matrices, Al =M" is a
symmetric matrix and ¢ is some scalar. The orthogonal projec-
tion of R* onto L is denoted by P, :R"™ = L. The
Euclidean inner product {X,Y) on the set of symmetric ma-
trices X=X"Y=Y" is given by (X,Y)=wu(XY). To
find the orthogonal projection associated with L , we convert
tr(A"MB) = into the form

. 1 . - 1 .
tr(A"MB) = tr(;(AB' +BANM) = <;(AB7 +BA f),M> =

It is known that any matrix can be expressed as the sum of two
matrices

M =M, + M, (36)
where
1 - 1 . .
M, = ,LL1E(AB' +BA’ )M, = |M—,u]E(AB’ +BAMY,

where M, lies in the linear subspace L, defined by
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L, :{M|tr(ATMB)=O} and M, isperpendicular to L,.
From the properties of inner product, one has

1 1 .
<MH,ML> = tr([;(/{BT +BAN M 4;115(/1157 +BAN =0,

or

= i 4tr(/T1 MB)T _ 37
tr((AB" + BA")(AB" + BA"))

Thus, the projection of P, : 3™ = L, is given by
P, =M—p, %(AB"‘ +BAT). (38)
Then, the projection of P, : ®"™" = L is given by
P (M)=P, (M)+ MZ%(ABT +BAY, (39)
where p, is obtained from
<%(ABT +BA"), MZ%(ABT +BA" )> =

or,

4¢
e = (AB" + BAT)(AB" + BA))

(40)

The general form of the projection operator P, :R™ = L s
then

¢ —tr(A" MB) (41)

P, (M)y=M+2(AB" +BA" - : : .
L (A1) ( )tr((AB’ +BA")(AB" +BA"Y)

Appendix B: Finding a feasible initial
positive definite matrix

In this appendix, a systematic method for a calculating an
initial positive definite matrix, Q. (0), satisfying the con-
straints in Problem 4.1 is presented. This matrix is then used
as the input for the Algorithm 3.

A positive definite matrix can always be factored into the
form

O, (0)=P P,

(42)

where ‘,Qi_“(O):(‘Qg“(O))T >0 is an initial positive matrix
required for Algorithm 5.1 and P, is a square root of
2,,0).

Substituting Eq. 42 into the linear constraint Eq. 25, Section
4, one has

E/R, P/ DPE, = ylk—1)— y(k).

Assume that D®E,_, =0 (thatis e(&)=0), and define

Sk~ y(k)
[Poe. |

_ D%, _
gk = Doe T and 7(k)

Then, one has

E[F, P/ g(k)=1(k), (43)

where g(k) and E, are both the unit length vectors, and all
the scaling information is contained in #(k).

The development proceeds by thinking of PJ‘ $asa
transformation on ™' . Using the vector inner product
(n0)=u"v ., where uy€R’, one hasfrom Eq. 43

<P£':‘E1 ’pfi..g(k» = f(k) (44)

Consider the 2-dimensional subspace in R’ given by
sp{E,.g(#)} . An orthonormal basis for this subspace is pro-
vided by the vectors
:M an ]V::_Eﬂege?’ (45)
|E + g4 |E — %)

1

Expressing E, and grk) as 2-dimensional vectors in this sub-
space, written in terms of the coordinates induced by the or-
thonormal vectors, ¥, and I, , one has

T 74

1
w

E=| " |E and k)= (k) ER. (46)

~

Here ||E1|| =1 and ||g(£)|=1 since E, and grk) lie in the
span of 17, and 1V, .

Note that the two coordinate vectors W, and W, are
chosen such that the vectors E, and j(4) always lie sym-
metrically about the 17, axis in the right half plane of the 2-
D subspace, spanned by 7, and W, (see Fig. 5). To pre-
serve the intuition provided by this construction, it is neces-
sary to be careful about the sign of ¢/k) in Eq. 44.

W, E

BE
R, ®=0,
B
Platk)
Uk

Fig. 5. Subspace Given by sp{E,, 2(4)}

1. Case of 7(%£)>0: In this case, the two vectors E, and
(&) are in the right half plane. If the angle between two vec-

tors E, and j(k) is larger than a set value (in this case % )

and less than =, a scaling matrix 135“ is chosen to pre-
multiply E, and 3(4) which acts to reduce the angle. In the
case that the angle is less than the set value, it is sufficient to
choose P, =1, €R™. This is the case that Eq. 43 can be
satisfied by adjusting a scaling parameter ¢, . (cf. Eq. 57).

2. Case of #(£) < 0: In this case, the intuition of reducing
the angle between E and j3(&) is not valid. Take
E,=—E, and #(#)=—¢(k#). This leaves Eq. 44 valid. and
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returns the analysis to that discussed in case 1.

Remark B.1: The choice of P, to pre-multiply E, and
&(k) in case 1 can be thought of as tweaking the direction of
gradient flow slightly by adjusting the metric to make sure that
the sign of <P£:‘ E, ,Pg‘g(k)> is the same as the sign of (k).
Once this is the case, then ensuring that Eq. 44 is satisfied can
be achieved by scaling P, .

Remark B.2: To complete the construction indicated above,
it is necessary that E, ==43(£), or equivalently the angle
between E, and (&) is neither 0 nor 7T. In practice. this
seems never to occur. In the case that such a situation occur,
the adaptation would be frozen for that time instance.

The matrix P, €% applied case 1 above is simply

1+8
0

S

0
1],where B>-1. (47)

To determine the unknown g . consider computing the angle
between B E, and B’ 3(#) viathe equation

(B BB 3w)=co@|B B J|E 28] 4®)

Remark B.3: In this development, we do not explicitly fix
¢, the desired angel between F, and g(4). For the simula-

. . T
tion, we have been choosing 6 = 3

Observe that the symmetry of the construction (cf. Fig. 3)
yields

Using this along with the symmetry of P, . one has from
Eq. 48

1’5{;"| El

|=|2 2] (49)

B[P} g(k) = cos(O)E P E , (50)
or
E/F | §(k)— E, cos(6)] = 0. (51
To simplify the computation, let
E = [?] and §(k)= _J; ] . (52)

Substituting Eq. 47 and Eq. 52 into Eq. 51 yields

(s ‘(2>[(1+ﬁ)3 O][:;ﬁ]_ fl]cosw)

=0,
0 1
51428+ B[s, — 5, cos(B)] + 5,[—s, — 5, cos(8)] = 0.

“

or

Solving for 3 yields

1+ cos(8)
1—cos(0)

5

B=—1+ , (53)

51

where the argument inside the square root can not be negative
because of triangular relationships.
Observe that §, and .5, arc the orthogonal projections
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of E, onto the axes W, and ¥, . Thus, one has from Eq.
46 and Eq. 52,

B w1+ (B g8)

e e _ ,
=R = () = B = T el

and

B -Jw] L 1-(E.ab)
R N

= WE = (1, )

Also, it is easily verified that

IE + sk = B[ + gl +2E sk) =21 +(E,. 2(&))],

and
IE = sl =|E[ +lal —2E sk =2[1—(E,, 28)].

Therefore, from the above equations, the explicit expression
for §; and §, are

. 1
=B+ ) and 5, = SlE -] (54)

Choosing the positive square root of Eq. 53 ( so that
B > —1) yields an explicit value for 3

E — o(k 1 s
IE, + g |1 cos(0)
Thus, P, €R*7of Eq. 47 is uniquely defined.
The matrix P, €®™ is now defined by
- (T ] s wr
pomalo el w7 oo

where 1, € R™ s the identity matrix and 6, >0€ R is the
scaling factor.

By construction, the matrix P, ~ given by Eq. 56 should
satisfy Eq. 43. Observe that when B, is substituted into Eq.
43, only the last term contributes to the inner product. Thus,
Eq. 43 becomes

r

. - (w7
SE (W, Wb, | ! ]g(k)z (&),

St

w,r
or,
5 (P BBy g(8)) = 1(4),
where
P =(w, w,)Pb Wl:.
Sl

Finally, solving for the scaling factor &, , one has

1(%)

O, = |[v—/7—"-2—+,
(P, BB, g(k)

3

(57)

where the argument of the square root is strictly positive since
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<PE'“El ,PE'Hg(é)> >0 by construction and #(4&)>0 by
choice (cf. case 2).
Thus, an initial positive definite matrix Q. (0) for input
into the optimisation procedure, Algorithm 5.1, is given by
Q. (=1 B/ =5F,.

&
where

T
1
o T

-

v,
Wy

(LS NATECAATY

]. (58)
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