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GENERIC LIGHTLIKE SUBMANIFOLDS OF
AN INDEFINITE KAEHLER MANIFOLD WITH
A NON-METRIC ¢-SYMMETRIC CONNECTION

DAE Ho JIN

ABSTRACT. The notion of a non-metric ¢-symmetric connection on semi-
Riemannian manifolds was introduced by Jin [6,7]. The object of study
in this paper is generic lightlike submanifolds of an indefinite Kaehler
manifold M with a non-metric ¢-symmetric connection. First, we pro-
vide several new results for such generic lightlike submanifolds. Next, we
investigate generic lightlike submanifolds of an indefinite complex space
form M (c) with a non-metric ¢-symmetric connection.

1. Introduction

A lightlike submanifold M of an indefinite almost complex manifold M
equipped with an almost complex structure J or an indefinite almost contact
manifold M equipped with an almost contact structure J is called a generic
lightlike submanifold if there exists a screen distribution S(T'M) such that

(1.1) J(S(TM)*) c S(TM),

where S(TM)= is the orthogonal complement of S(T'M) in the tangent bun-
dle TM of M, i.e., TM = S(TM) @upn S(TM)*. The notion of generic
lightlike submanifolds was introduced by Jin-Lee [8] in 2011 and later, studied
by Duggal-Jin [2], Jin [3,4] and Jin-Lee [9]. Every lightlike hypersurface and
every half lightlike submanifold of codimension 2 of an indefinite almost com-
plex manifold are examples of generic lightlike submanifolds. The geometry of
generic lightlike submanifolds is an generalization of that of lightlike hypersur-
faces and half lightlike submanifolds. Much of its theory will be immediately
generalized in a formal way to general lightlike submanifolds.

A linear connection V on a semi-Riemannian manifold (M, g) is called a
non-metric ¢-symmetric connection if V and its torsion tensor T satisfy

(1.2) (Vxg)(YV,Z) = - 0(Y)p(X, Z) - 0(2)p(X.Y),
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(1.3) T(X.Y) = 0(V)JX — 0(X)JY,

where ¢ and J are tensor fields of types (0,2) and (1,1) respectively, and 6 is a
1-form associated with a smooth vector field ¢ by (X) = g(X,¢). Throughout
this paper, denote by X, Y and Z the smooth vector fields on M. The notion of
non-metric ¢-symmetric connections on an indefinite almost complex or almost
contact manifolds was introduced by Jin [6,7].

In this paper, we study generic lightlike submanifolds M of an indefinite
Kaehler manifold M = (M, g, J) with a non-metric ¢-symmetric connection,
in which the tensor field J in (1.3) is identical with the indefinite almost complex
structure J of M and the tensor field ¢ in (1.2) is identical with the fundamental
2-form associated with the indefinite almost complex structure J, that is,

(1.4) $(X,YV) = g(JX,Y).

Remark 1.1. Denote by V the Levi-Civita connection of an indefinite Kachler
manifold M with respect to the metric g. It is known [6] that a linear connection
V on M is a non-metric ¢-symmetric connection if and only if V satisfies

(1.5) VgV =VgV +6(Y)JX.

2. Structure equations

Let M = (M,g,J) be an indedinite Kaeler manifold, where g is a semi-
Riemannian metric and .J is an indefinite almost complex structure such that

(2.1) J2X =-X, §(JX,JY)=gX,Y), (VgJ)Y =0.

Replacing the Levi-Civita connection v by the non-metric ¢-symmetric con-
nection V, the third equation of three equations in (2.1) is reduced to

(2.2) (V)Y =0(Y)X +0(JY)JX.

Let (M, g) be an m-dimensional lightlike submanifold of an indefinite Kaehler
manifold M of dimension (m + n). Then the radical distribution Rad(T'M) of
M, defined by Rad(TM) = TM NTM+*, is a vector subbundle of the tangent
bundle TM and the normal bundle TM~, of rank r (1 < » < min{m, n}). In
general, there exist two complementary non-degenerate distributions S(T'M)
and S(TM+*) of Rad(TM) in TM and T M+, respectively, which are called the
screen distribution and the co-screen distribution of M, such that

TM = Rad(TM) @orin, S(TM), TM* = Rad(TM) @orer, S(TM™L),

where @, denotes the orthogonal direct sum. Denote by F'(M) the algebra
of smooth functions on M and by I'(E) the F(M) module of smooth sections
of a vector bundle E over M. Also denote by (2.1); the i-th equation of (2.1).
We use the same notations for any others. Let X, Y, Z and W be the vector
fields on M, unless otherwise specified. We use the following range of indices:

i, g koo € {1,..., 1}, a, bye,... €{r+1,...,n}
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Let tr(TM) and ltr(TM) be complementary vector bundles to T'M in T M|
and TM+* in S(TM)* respectively and let {Ny, ..., N,} be a lightlike basis
of itr(T'M),,,, where U is a coordinate neighborhood of M, such that

9(Ni, &) = dij, g(Ni, N;) =0,
where {&1, ..., &} is a lightlike basis of Rad(T'M),,. Then we have

TM = TM @ tr(TM) = {Rad(TM) @& tr(TM)} Gopen S(TM)
= {Rad(TM) & ltr(TM)} ©ortn S(TM) ©opin S(TM™).
We say that a lightlike submanifold M = (M, g, S(TM),S(TM=1)) of M is

lee>

) r-lightlike submanifold if 1 < r < min{m, n};
) co-isotropic submanifold if 1 <r =n < m;
) isotropic submanifold if 1 <r=m <mn;

) totally lightlike submanifold if 1 <r=m =n.

The above three classes (2)~(4) are particular cases of the class (1) as follows:
S(rM+)={0},  S(TM)={0},  S(I'M)=S(TM")={0},

respectively. Thus the geometry of r-lightlike submanifolds is more general
than that of the other three types. For this reason, we consider only r-lightlike
submanifolds M with following local quasi-orthonormal field of frames of M:

{&,...,&, N1, ..., N, Fryq, ..., By Erja, ..., En},

where {Fy11,...,Fn} and {E, 11, ..., E,} are orthonormal bases of S(T'M)
and S(T M), respectively. Denote €, = g(Eq, E,). Then €,645 = §(Eq, Ep).

Let P be the projection morphism of TM on S(T'M). Then the local Gauss-
Weingarten formulae of M and S(TM) are given respectively by

(2.3) VxY = VxY + ) hi(X,Y)N;i+ Y hi(X,Y)E,,
1=1 a=r+1

(2.4) VxNi = —A, X+ 7;(X)N;+ Y pia(X)Eq,
j=1 a=r+1

(2.5) VxEBo = —Ay X+ XaiX)INi+ Y pap(X)Ey;
i=1 b=r+1

(2.6) VxPY = VYPY +Y hi(X,PY)&,
i=1

(2.7) Vx& = —A;X—Z%(X)fm
j=1

where V and V* are induced linear connections on M and S(T'M) respectively,
hf and h; are called the local second fundamental forms on M, h are called
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the local second fundamental forms on S(T'M). A, , A, and Af are called
the shape operators, and Tij, pia, Aais tab and oj; are 1-forms on T'M.

Let M be a generic lightlike submanifold of M. From (1.1) we show that
J(Rad(TM)), J(ltr(TM)) and J(S(TM+*)) are vector subbundles of S(T'M).
Thus there exist two non-degenerate almost complex distributions H, and H
with respect to J, i.e., J(H,) = H, and J(H) = H, such that

S(TM) = {J(Rad(TM)) ® J(Itr(TM))} @oren J(S(TM™)) @oren Ho,
H = Rad(TM) @orin J(Rad(TM)) ®orin Ho.
In this case, the tangent bundle T'M of M is decomposed as follow:
(2.8) TM = H & J(Itr(TM)) @oren, J(S(TM™)).

Consider 2r-th local null vector fields U; and V;, (n — r)-th local non-null
unit vector fields W, and their 1-forms u;, v; and w, defined by

(2.9) U= —JN;, V, = —Jg, W, = —JE,,
(210) U'L(X) :g(Xa‘/Z)7 UZ(X) :g(X7U1)a wa(X) :eag(Xa Wa)

Denote by S the projection morphism of TM on H and by F' the tensor field
of type (1,1) globally defined on M by F = JoS. Then JX is expressed as
(2.11) JX =FX+ Y wi(X)Ni+ > we(X)E

1=1 a=r+1
Let n; be the 1-forms such that 7;(X) = g(X, N;). From (2.11), we see that

(2.12) u;(FX) =0, we(FX) =0, v;i(FX) = —n;(X),
FU; =0, FW, =0, FV;, =&.

Applying J to (2.11) and using (2.1), (2.9) and (2.12), we have

(2.13) F2X = —X—l—Zul WU; + Z wa (X

=1 a=r+1

Substituting (2.11) into (2.1)2 and using (2.9) and (2.10), we have

(2.14) g(FX,FY) = g(X,Y) Z{ul Y) 4 ui(Y)vi (X))}

- Z €aa (X )wa (Y).

a=r+1

In the following, we say that F' is the structure tensor field of M.
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3. Equations related to non-metric ¢-symmetric connection

Denote by «;, 3; and 7, the smooth functions on M given by

ai=0(&),  Bi=0Ni), 7= 0(Ea)
Using (1.2), (1.3), (1.4), (2.3), (2.9) and (2.11), we see that

(3.1)  (Vxg)(Y,2) Z{he (X, Y):(Z) + hi(X, Z)n:(Y)}

—0(YV)¢(X, Z) = 0(2)p(X,Y),
(32)  T(X,Y)=0(Y)FX — 6(X)FY,
hi(X,Y) = hi(Y, X) = 0(Y )ui(X) — 0(X)u;(Y),
ha(X,Y) = hg (Y, X) = 0(Y )wa(X) — 0(X)wa(Y),

(35)  S(X,Y)=g(FX,Y)+ Y u;(X)ni(Y),
=1

(3.6) d(X, &) =ui(X), o(X,N;) =v;(X), d(X, Ey) = eqwa(X),

¢(Xa V;) = Oa ¢(Xa Uz) = 7771(X)3 ¢(Xa Wa) =

1051

From the facts that hf(X,Y) = g(VxY, &) and €,hs(X,Y) = g(VxY, E,),
we know that h{ and h$ are independent of the choice of S(T'M). The above

local second fundamental forms are related to their shape operators by

(3.7) hi(X,Y) = g(AL X,Y) + ui(X)0(Y) + qig(FX,Y)
— SR €) — anun (X)),
(3-8) €aho(X,Y) = g(lj‘:a X,Y) + €awa(X)0(Y) +7ag(FX,Y)
- i{Aak(X) — Yatur(X) bk (Y),
(3.9) hi(X,PY) = g(AkN: TX PY) +v;(X)0(PY) + B;g(FX, PY).

Applying Vx to g(&,&;) = 0, §(&i, Ea) = 0, §(Ni, Nj) = 0, G(Ny, E,)
G(Eq, Ep) = €400 and g(N;,§;) = 0;; by turns, we obtain
hf(X &)+ hZ(X &) = aiuy(X) + aju;(X),
h (X, &) = —€a{Aai(X) = Yaui(X)} + oywa (X),
(3.10) 1 (Ay, ni(Ay, X) = =Biv; (X) — Bjvi(X),
ni(Ap, X) = ea{pw( ) = Biwa(X)} — vavi(X),
6b{ﬂab( ) = Yaws(X)} + €a{ppa(X) — pwa(X)} =0,
7ij (X) = 04;(X) 4 i (X) + Biu; (X).

X))+
X)

=0,
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As a consequence of (3.3) and (3.10)1, it follows that

(3.11) hi(X, &) = asus(X), hi (&, X) = 0.
By using (3.3), (3.7), (3.10); and (3.11)2, we deduce
(3.12) hi(&5,r) =0, Ag & = oi Vi

Applying Vx to (2.9)1 2 3 and (2.11) by turns and using (2.2), (2.3) ~ (2.7),
(2.9) ~(2.11) and (3.7) ~ (3.9), we have
ho(X,U;) = uj(Ay, X) + 0(U;)u; (X)
= hi(X,V5) + 0(Ui)u; (X) = 0(Vy)vi(X),
ha (X, Ui) = wa(Ay, X) 4 0(Ui)wa (X)
)
)

ea{hi (X, W,) — 0(Wo)v:(X)} + 0(U))we (X)),
(3.13)  hj(X, Vi) = uj(Ag, X) + 0(Vi)uy (X
= h{(X,V;) + 0(Vi)u; (X) — 6(Vj)ui(X),
(X, Vi) = wa(AZ, X) + 0(Vi)wa (X)
= €a{hf(X,Wa) = 0(Wa)us (X)} + 0(Vi)wa(X),
eo{hi (X, Wa) — 0(Wa)wy(X)} = ea{hy (X, Wy) — 0(Wp)wa (X))},

(3.14) VxUi = F(A, X) +ZT” VU, + Z pia(X
Jj=1 a=r+1
(3.15) VxVi = F(A; X Zaﬂ X)V;+ Y BA(X, &)U
j=1
+ Z RE(X, &)W, — ;X +0(V;)FX,
a=r+1
(3.16) VxW, = F(A,, X) +ZAQ, WU; + Z fhap(X
=1 b=r+1

_’YaX“‘H( ) X7

(3.17) (VxF)(Y Zuz YV)A, X + Z wa(Y)A, X
a=r+1
—ZMXYU— Z h (X, Y)W,
a=r+1

+ e(Y)X +0(JY)FX.

Definition. We say that a lightlike submanifold M of a semi-Riemannian
manifold (M, g) is rrotational [10] if Vx& € T(TM) for all i € {1, ..., r}.
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Remark 3.1. From (2.3), the above definition is equivalent to

(318) hﬁ(Xv gz) =0, h;(Xa gz) =0.
From (3.10); 2, we see that if M is irrotational, then we have
(3.19) a; = 0, )\m‘(X) = 'yaui(X).

4. Recurrent and Lie recurrent generic lightlike submanifolds

Definition. The structure tensor field F of M is said to be recurrent [5] if
there exists a 1-form w on M such that

(VxF)Y = w(X)FY.
A lightlike submanifold M of an indefinite Kaehler manifold M is called recur-
rent if it admits a recurrent structure tensor field F'.

Theorem 4.1. Let M be a recurrent generic lightlike submanifold of an indef-
inite Kaehler manifold M with a non-metric ¢-symmetric connection. Then

(1) F is parallel with respect to the induced connection V on M,
(2) M is irrotational,
(3) the 1-form 0 vanishes, i.e., 6 =0, on M. Thus the indeced connection

V on M is a torsion-free non-metric connection,
(4) H, J(Itr(TM)) and J(S(TM*)) are parallel distributions on M,
(5) M is locally a product manifold

M=M"xM"" x M™™,
where M, M™™" and M™~" are the leaves of the parallel distributions
J(Itr(TM)), J(S(TM*1)) and H respectively.
Proof. (1) From the above definition and (3.17), we get

(4.1) o(X)FY = im(y)AMXJr zn: wa(Y)A,, X
=1 a=r+1

“STRE U - D R(X Y)W,
=1 a=r+1
+0(Y)X +0(JY)FX.

Replacing Y by &; and using the fact that F'§; = —V}, we obtain
(42) @(X)V; =D WX Ui+ Y h(X.&)Wa — ;X +6(Vj)FX.
i=1 a=r+1
Taking the scalar product with N; to this equation, we obtain
0 (X) = 0(V;)s(X) = 0.
Taking X = ¢; and X = V; by turns to this equation, we have
(4.3) a; =0, 0(V;) =0, Yi.
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Taking the scalar product with U; to (4.2), we get w = 0. It follows that
VxF = 0. Therefore, F' is parallel with respect to the connection V.

(2) Taking the scalar product with V; and W, to (4.2) by turns and using
(4.3), we get two equations in (3.18). Thus M is irrotational.

(3) Replacing Y by V; to (4.1) and using (3.3), (3.4) and (4.3), we have
(44) R V) =RV, X) =0, RG(X, V) = he(V;, X) =0,
Taking Y = U; and Y = W, to (4.1) such that o = 0 by turns, we have

(45) Ay X => h(X,U)Up+ Y hi(X, U)W, —0(U)X — B FX,
k=1 a=r+1
(4.6) A, X =) hi(X, W)U+ Y hy(X,Wa)Wp, — 0(Wa)X — 7, FX.
i=1 b=r+1
Taking the scalar product with N; and U; to (4.5) by turns, we obtain
ni(Ay, X) = —0(Ui)n;(X) — Biv;(X),
9(Ay, X, Uj) = =0(Us)v;(X) + Bin; (X).
Taking ¢ = j to the first equation and using (3.10)3, we have 6(U;)n;(X) = 0.

It follows that 6(U;) = 0. Replacing PY by U; to (3.9) and using the second
equation, we have h}(X,U;) = 0. Therefore

@47 0U) =0, (A X)=—Biw;(X),  hi(X,U;) =0
Taking the scalar product with N; and U; to (4.6) by turns, we obtain
i(Ap, X) = =0(Wa)ni(X) — vavi(X),
9(Ap, X, Ui) = —0(Wa)vi(X) + vani(X).
By using (3.8), (3.10)4 and (4.7)1, the last two equations reduce to
pia(X) = 6iwa(X) - €a9(Wa)Tli(X),
hZ(X, Uz) = —Eae(Wa)’Ui(X).
Let X =V to the second equation and using (4.4)2, we get §(W,) = 0. Thus
(4.8) 0(Wa) =0, ni(Ag, X) = =7avi(X),
pia(X) :Biwa(X)7 hZ(X7Ul) =0
Taking the scalar product with N; to (4.1) and using (4.7)2 and (4.8)2, we get

0(Y)ni(X) +{6(JY) Zﬂkuk Z Yawa(Y) }vi(X) = 0.

a=r+1
Replacing X by &; and V; to thls equation by turns, we obtain

(4.9) 0(X)=0, 0(JY)=> Brm(Y)+ > Yawa(Y)
k=1

a=r+1

As® =0on M, from (3.1) and (3.2), V is a torsion-free non-metric connection.
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(4) Applying F to (4.5) and (4.6) and using (2.13), (4.7); and (4.8);, we get

F(A,X) = BiX == Bu(X)U; — > Biwa(X)W,
=1

a=r+1
F(Ap, X) —7.X =— Z%ui(X)Ui - Z Yaws (X)W,
= b=r+1

Using these equations, (3.19)2 and (4.8)3, (3.14) and (3.16) are reduced to

T

(4.10) VxU; = Z{Tij(x) - Biu; (X)}U;
(4.11) VaWa = > {nap(X) = yaws(X)} W,
b=r+1

It follows from (4.10) and (4.11) that J(Itr(TM)) and J(S(TM~)) are parallel
distributions on M with respect to the connection V on M, that is,

VxU; € D(J(Itr(TM))), VxW, € T(J(S(TM™))).
On the other hand, from (3.13)4, (4.4)2 and (4.9)1, we see that
(4.12) BE(X, W) =

Taking Y = FZ to (4.1) and using (4.9)1,2 and w(FZ) = w(FZ) = 0, we get
(4.13) hi(X,FZ) =0, hi(X,FZ) = 0.
For any X € T'(TM) and Z € T'(H,), by using (2.7), (2.14), (3.1), (3.5),
(3.6)4, (3.7), (4.3), (4.4)1, (4.9)1, (4.12) and (4.13), we derive
9(Vx&5, Vi) = —hj(X, V) + 0(Vi)u; (X) =0,
9(Vx&j Wa) = —hj(X, Wa) + 0(Wa)u; (X) =0,
9(Vx V3, Vi) = hi(X, &) — ajui(X) =0,
9(VxVj, Wa) = hg (X, §;) — €ajwa(X) =0,
g(VxZ, Vi) = hi(X,FZ) — 0(FZ)u;(X) = 0,
g(VxZWo) =ho(X,FZ) — €,0(FZ)wa(X) = 0.
It follows that H is also a parallel distribution on M, that is,
VxY el'(H), VX eI'(TM), VY eI'(H).

(5) As J(Itr(TM)), J(S(TM+)) and H are parallel distributions and satisfed
(2.8), by the decomposition theorem of de Rham [1], M is locally a product
manifold M = M"™ x M™™ " x M™~ ", where M", M™™" and M™~"™ are the
leaves of J(Itr(TM)), J(S(TM+*)) and H respectively. O
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Definition. The structure tensor field F' of M is said to be Lie recurrent [5]
if there exists a 1-form ¥ on M such that
(L, F)YY =%X)FY,

where £ denotes the Lie derivative on M with respect to X. In case ¥ = 0,
we say that F'is Lie parallel. A lightlike submanifold M is called Lie recurrent
if it admits a Lie recurrent structure tensor field F.

Theorem 4.2. Let M be a Lie recurrent generic lightlike submanifold of an in-
definite Kaehler manifold M with a non-metric ¢p-symmetric connection. Then
(1) F is Lie parallel,
(2) 7 and p;q are satisfied T;; 0 F =0 and p;jq, o F' = 0. Moreover,

7ij(X) = — an(ANi‘/j)uk(X)7

k=1
pia(X) =D piaUe)ur(X) + D pia(Wi)wp(X),
k=1 b=r+1
(3) a; =0 for all i, and the shape operators Ag, for all i satisfy
(4.14) AL U; =0, ALV = —F(A§&))-
Proof. (1) As (L, F)Y = [X,FY] — F[X,Y], we obtain
(4.15) HX)FY = —Vpy X+ FVy X

Jriui(Y)ANiXJr i wa(Y)AEaX
i=1

a=r+1

- Z{hf(X,Y) — (Y )us (X)}U;

- Z {hZ(va) - H(Y)wa(X)}Wa

a=r+1
+ D Bu(V)+ D qawa(Y)}FX,
=1 a=r+1
by (2.13), (3.2) and (3.17). Taking Y =¢; and Y = V; by turns, we have
(4.16) —9(X)V; = Vy, X + FV¢, X

= (X&) — oyui(X)) U

- Z {hZ(Xafj)_ajwa(X)}Waa

a=r+1

(4.17) I(X)E; = — Ve, X + FVy, X
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é
- E {ni (X, V;) = 0(V;)ui(X)}U;

- Z (h3(X,V}) = 0(V; )wa (X)}W,.

a=r+1
Taking the scalar product with U; to (4.16) and N; to (4.17) by turns, we get

—0i;9(X) = g(Vv; X, U;) — g(Ve; X, Ny),
(5ij’19(X) = g(VVjX, Ul) - g(V§jX, Ni).

Comparing the last two equations, we get ¥ = 0. Thus F' is Lie parallel.

(2) Taking the scalar product with N; to (4.16) such that X = W, and using
(3.4), (3.8), (3.10)4 and (3.16), we get k5 (U;, V;) = pia(§;). On the other hand,
taking the scalar product with W, to (4.17) such that X = U, and using (3. 14)
we obtain hj(U;, V;) = —pia(§;). Thus we have p;q(&;) = 0 and A3 (U;, V) =

Taking the scalar product with V; to (4.16) such that X = W, and using
(3.3), (3.4), (3.10)2, (3.13)4 and (3.16), we obtain Ay (V) = —A4;(Vi). Next,
taking the scalar product with W, to (4.16) such that X = V; and using (3.15),
we have hJ(V;, &) = hi(V;,&). As by (V;, &) = —€aXai(V}) by (3.10)2, we see
that A\ei(V;) = Ag;(Vi). Thus we obtain A,;(V;) = 0 and hj(V;,&;) = 0.

Taking the scalar product with W, to (4.16) such that X = ¢ and using
(2.7), (3.4), (3.7) and (3.10)2, we get hf(V;,W,) = M\ui(§;). Next, taking the
scalar product with V; to (4.17) such that X = W, and using (3.3) and (3.16),
we get hi(V;,W,) = —Xai(&;). Thus A\si(&;) = 0 and hi(V;, W,) = 0.

Taking the scalar product with U; to (4.16) such that X = W, and using
(3.4), (3.8), (3.10)2,4 and (3.16), we have €zp;a(V;) = Aaj(Ui) — Vadi;. Next,
taking the scalar product with W, to (4.16) such that X = U; and using
(3.10)2 and (3.14), we obtain €,piq(V;) = —Aa;(Ui) + va0i5. Thus p;e(V;) = 0,
Aaj(Ui) = 740i; and R (U;, &) = 0. Summarizing the above results, we get

pia(g') =0, Pia(‘/j) =0, )\m(v) =0, Aa (gj) =0,
(4.18)  Xai(Uj) = vabij,  hg(Ui, Vi) =0, hg(Ui, &) = hi (&5, Wa )

hi (Vi Wa) = hi (Vi Vi) =0, i (Vir &) = hi(Wa, &) =
Taking the scalar product with N; to (4.15) and using (3.10)4, we have
(4.19) - Q(VFYX Ni) +9(Vy X, Us)

+Zuk Hg(Ay, X, Ni) + Broi(X)}

+ Z €t (Y){pia(X) — Bwa (X)} = 0.

a=r+1
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Replacing X by &; to (4.19) and using (2.7), (3.7), (3.10)¢ and (4.18);, we have
(420)  BS(XU) = Zuk 9(Ay, &, Ni) + 73 (FX).

Taking X = Uy to this equation and using (3.13);, we have
Taking X = U; to (4.15) and using (2.13), (3.3), (3.4) and (3.13);,2, we get

(4.22) Zuk AU+Zwa VA, Ui — A, Y
a=r+1
— F(AFY) =) mi;(FY)U; — > pialFY)W, = 0.
Jj=1 a=r+1

Taking the scalar product with V; to (4.22) and using (3.8), (3.9), (3.10)s,
(3.13)1, (4.18)g and (4.21), we obtain

he(X,U;) — 0(U; Zuk )3(Ay, & Ni) — 73 (FX).
Comparing this equation with (4.20) we obtain

(4.23)  KS(X,Ui) = 0(Up)uy(X), 7(FX)+ Zuk )3(Ay, &, Ni) = 0.
k=1
Replacing X by Uj, to (4.23)2, we have g(A, &;, N;) = 0. Thus we see that

From (4. 23)1, we have hé (FX,U;) =0. Replacing X by V; to (4.19) and using
(3.7), (3.10)3,6, (3.15) and (4.18)4, we obtain

Ti5(X) = Z{m(ANij) + Brdij + Bl Yup(X)

k=1
= = (A, Vi ur(X).
k=1
Replacing Y by W, to (4.22), we obtain A, U; = A, W,. Taking the scalar
product with U; to this and using (3.4), (3. 8) (3.9) and (3.13)2, we have

(4.24) hi(Wa, Uj) = €ahy (Ui, Uj) = €ahe (U, Ui) = hi (Us, Wa).
Taking the scalar product with W, to (4.22) and using (3.8) and (3.9), we get
Gapia(FY) = - h*(Y W ) + 9( a)’Ui(Y)

n

—i—Zuk ViU, Wa) + Y evwy (V)R (Ui, Wa).
b=r+1
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Taking the scalar product with U; to (4.15) and then, taking X = W, and
using (3.4), (3.8), (3.9), (3.10)4, (3.13)2, (3.16) and (4.24), we obtain

€apia(FY) = hi(Y,Wa) = 0(Wa)ui(Y)

—Zuk ViU, Wa) = Y evwy (V)R (Ui, Wa).

b=r+1
Comparing the last two equations, we obtain
pa(FY) = 0.
Replacing X by W, to (4.19) and using (3.8), (3.10)4 and (3.16), we have
€apia(X) = — eah(FX,U5)

n

+Zuk G A Wa, Ni)+ > eywy(X)pin(Wa).

b=r+1
Taking X = Uy, X = W, and X = FY to this equation by turns, we have
eapza(Uk) = g(A thNi) eapia(Wb) = €bpib(Wa),

n

he (Y, U;) Zuj VRU;L U + Y wa(Y)h(Wa, Uy).
a=r+1

Replacing Y by FX to the last equation, we have h(FX,U;) = 0. Thus

n

pia(X) =D piaUe)ur(X) + D pia(Wy)wp(X).
k=1

b=r+1
(4) Replacing Y by U; to (3.3) and using (4.23);, we obtain
(4.25) hi(Uj, X) = 0(X)d;5,  hi(U;, &) = 0.

Taking X = Uj to (3.7) and using (4.25)1,2, we get g(AZ, Uj, X) = —a;n;(X).
Replacing X by & to this equation, we have

(4.26) a; =0, Vi.
Thus g(Af,Uj, X) = 0. As S(T'M) is non-degenerate, we get A7 U; = 0.
Taking X = &; to (4.16) and using (3.10)2 ¢, (3.12)1, (4.18)3,4 and the fact
that 7;;(§k) = 73;(V;) = 0, we get A V; = —F(AL ;). O
5. Generic submanifolds of an indefinite complex space form

Definition. An indefinite complex space form M/(c) is a connected indefinite
Kaehler manifold of constant holomorphic sectional curvature ¢ such that

(5.1) R(X,Y)Z = f{g(Y 2)X - §(X,2)Y
+g(JY,2)JX —g(JX,2)JY +2g(X,JY)JZ},

where R denote the curvature tensor of the Levi-Civita connection V on M.
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Let R be the curvature tensor of the non-metric ¢-symmetric connection V
on M. By directed calculations from (1.3) and (1.5), we see that

(5.2) R(X,Y)Z = R(X,Y)Z + (V0)(Z)JY — (Vy0)(2)JX

Denote by R and R* the curvature tensors of the induced connections V and
V* on M and S(TM) respectively. Using the Gauss-Weingarten formulae, we
have the Gauss equations for M and S(T'M) such that

(5.3) R(X,Y)Z = R(X,Y)Z + i{hf(x, Z)A, Y —hi(Y,Z)A, X}
+ Zn: {(h3(X,2)A,, Y — hi(Y,Z2)A,, X}

a=r+1

+ ET:{thf)(Y, Z) — (Vyhi)(X, Z)

=1

N zrjm(X)hﬁ(Y, 7) - (Y )RA(X. Z)

+ Z XY, Z) = Xai(Y)B3(X, 2)]
a=r+1
— 0(X)h{(FY, Z) + 0(Y)hi(FX, Z)}N;

+ Y AV, 2) = (Vyhy)(X, 2)
a=r+1

+sza hé YZ)_pw,( )hf(X’Z)]

+ Z tba (X5 (Y, Z) = pipa(Y) Ry (X, Z)]
b=r+1
—O0(X)ho(FY, Z) + 6(Y)he(FX, Z)} Ea,

(54) R(X,Y)PZ=R"(X,Y)PZ+Y {hj(X,PZ)ALY — j(Y,PZ)A¢, X}

i=1

+ Y A(Vxh))(Y,PZ) = (Vyh)(X,PZ)

i=1
+Zam VWi (X, PZ) — o (X)hi (Y, PZ)]

- Q(X)h’{(FY, PZ)+0(Y)hi(FX,PZ)}&:.
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Comparing the tangential components of (5.2) and (5.3), we obtain

(5.5) R(X,Y)Z = i{hf(y, Z)A, X —hi(X,Z)A, Y}

=1

+ zn: {hZ(Yv Z)AEQX - hZ(X’ Z)AE@ Y}
a=r+1
+(VxO)(Z)FY — (Vy0)(Z)FX
+ {0V 2)X — g(X, 2)Y
+9(JY,Z)FX — g(JX,Z)FY +2g(X,JY)FZ},

due to (5.1). Taking the scalar product with NV; to (5.4) and then, substituting
(5.5) into the resulting equation, we have

(5.6) (Vxhi)(Y, PZ) — (Vyhi)(X, PZ)

j=1

j=1

+ Y AR, PZ)ni(A,,Y) = b (Y, PZ)mi(A,, X))}
a=r+1
- H(Xjr)h;‘(FY, PZ)+0(Y)hi(FX,PZ)
— (Vx0)(PZ)vi(Y) + (Vy0)(PZ)vi(X)
= L9, PZ)mi(X) = g(X. PZ)(Y)
+v;(X)g(JY,PZ) — v;(Y)g(JX,PZ) + 2v,(PZ)g(X,JY)}.
Theorem 5.1. Let M be a generic lightlike submanifold of an indefinite com-

plex space form M (c) with a non-metric ¢-symmetric connection V. If one of
the following four statements

(1) M is recurrent,
(2) Uis are parallel with respect to the induced connection V, or
(3) Vis are parallel with respect to the induced connection V

is satisfied, then M(c) is flat, i.e., ¢ = 0.
Proof. (1) Applying Vx to (4.7); and using (2.3), (4.8)4 and (4.9);, we get

(5.7) (Vx0)(Us) = =Y Brhin(X, Us).
k=1

Applying Vx to (4.7)3: h}(Y,U;) = 0 and using (4.10), we obtain
(Vxhi)(Y,U;) = 0.
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Taking PZ = U; to (5.6) and using (4.7)2, (4.8)4 and (5.7), we get

o (V)0 = v COm(Y ) + 0¥ )y (X) = 0s(X0m; ()} =0,

Taking X = §; and Y =V} to this equation, we get ¢ = 0.
(2) As VxU,; = 0, taking the scalar product with U; to (3.14), we get

;i (Ay, X) + Biv; (X) + 0(U;)n; (X) = 0.

Taking the skew-symmetric part with respect to ¢ and j and using (3.10)3, we
have §(U;)n;(X) + 0(U;)n;(X) = 0. Taking X = ¢; to this result, we obtain

Applying Vx to 8(U;) = 0 and using (2.3) and the fact that VxU; = 0, we get

T n
(5.9) (VxO)(Ui) = = > Behf(X,U) = > 7ahy(X,Us).
k=1 a=r+1
Taking the scalar product with W, and N; to (3.14) and using (5.8)1, we have
(5.10) pia(X) = Biwa (X), hi (X, Uj) =0.
From (3.10)4 and (5.10)1, we see that
(5'11) ni(AEaX) = _’Yavi(X)'

Applying Vy to (5.10)2 and using the fact that VxU; = 0, we obtain
(Vxhi)(Y,U;) = 0.

Replacing PZ by U; to (5.6) and using (5.8)2, (5.9), (5.10)2, (5.11) and the
last equation, we have

E{Uj(Y)Th(X) = v (X)ni(Y) +vi(Y)n; (X) — vi(X)n;(Y)} = 0.

Taking X = ¢; and Y = Vj to this equation, we have ¢ = 0.
(3) As VxV; = 0, taking the scalar product with V;, W, and N; to (3.15)
by turns and using (3.7) and (3.13)1, we get

(5.12)  RBH(X,&) = apu(X),  BE(X,&) = auwa(X), BV, V5) = 0.

Taking Y = ¢; to (3.3) and (3.4) by turns and using (5.12)1, 2, we get

(5.13) WG X)=0, k(& X)=0.

Applying Vx to (5.12)3 and using the fact that VxV; = 0, we have
(Vi) (Y, V) = 0.

Taking PZ = Vj to (5.6) and using (5.12)3 and the last equation, we get

> {hi (X, Vimi(Ay,Y) = hi (Y, Vini(A,, X))}
j=1
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+ > AR Vm(AL,Y) = B (Y, Vi)mi(Ag, X))
a=r+1

— (VxO)(V)Y) + (Vy 0)(V;)vi(X)
= (V0 =y (XOmi(Y) + 20,5(X, JY ) }.

Taking X = ¢; and Y = U; to this equation and using (5.13), we have
T n s 3
= UL Vimi(Ay, &) = Y B Vimi(Ay, &) = e
k=1 a=r+1
By using (3.3), (3.4), (3.10)4, (3.13)1,4, and (5.12)3, we see that
hu(U;, Vy) = Wi (Vi, Uy) + 0(Vi) = B (Vy, Vi) = 0,
hZ(Uj, VJ) = ea{hﬁ(Ujv Wa) —0(Wa)}
= cah§(Wa, Uj) = eahj(Wa, V) = 0.

From the last three equations, we see that ¢ = 0. O

Theorem 5.2. Let M be a Lie recurrent generic lightlike submanifold of an
indefinite complex space form M (c) with a non-metric ¢-symmetric connection
V. If each A, is S(T'M)-valued, then M(c) is flat, i.e., c = 0.

Proof. In general, using the Gauss-Weingarten formulae (2.6) and (2.7) for the
screen distribution S(T'M), we have the Codazzi equation for S(TM):

(5.14)  R(X,Y)& = — Vi(ALY) + Vi (AL X) + AL[X, Y]

+) {o;i(V)AL X — 0i(X) ALY}
j=1

+ (R (Y, AL X) — b3 (X,ALY) — 2doji(X,Y)
j=1

+ ) [ok(X)owi (V) = 05k (V)ori(X)]}E;.
k=1
Assume that each A, is S(T'M)-valued. As (A X) = 0, from the first
equation of (2) in Theorem 4.2 we have 7;; = 0. From (3.10)3, we obtain
Bivi (X) + Bjvi(X) = 0.

Taking X = Vj to this equation, we obtain 8; = 0. As 7;; = a; = ; = 0, from
(3.10)6, we see that 0;; = 0. Summing up these results

(5.15) a; =0, Bi =0, 7ij = 0, oij = 0.
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Applying Vx to 6(&;) = 0 and using (2.3), (3.7), (3.10)2 and (5.15), we get
(5.16) (Vx0)(&) = 0(ALX) + Y €aYa{rai(X) = vaui(X)}.
a=r+1

Taking the scaler product with N; to (5.5) with Z = &; and then, comparing
this result with the radical component of (5.14) and using (5.16), we obtain

hi (Y, Ag, X) = hj(X, AgY) = Z{Ui(Y)vj(X) — ui(X)v;(Y)}

= > Pai(X) = awi(X)}pja(Y)

a=r+1

+ D ailY) = 7w (Y)}pja(X)
a=r+1

+0(Ag, X)v;(Y) — 0(Ag, Y)v;(X).
Taking X = U; and Y = V; and using (4.14); and (4.18)2, 3, we obtain
(5.17) hi(U;, AL V) =

¢
1
Replacing X by &; to (3.7) and using (3.12);, we have
hi(&,X) = 9(Az &, X).

Taking Y = &; to (3.3), we obtain hf(X,&;) = hf(¢;, X) since a; = 0. Due to
(3.10)1, h¢(X,&;) are skew-symmetric. Thus hf(€;, X) are also skew-symmetric
with respect to ¢ and j. It follow that Af ¢; = —Azj&-, ie., A; & are skew-
symmetric with respect to ¢ and j. From this result and (4.14),, we see that
AaVJ are skew-symmetric with respect to ¢ and j. On the other hand, taking
Y = Uj to (4.18), we have A, U; = ANj U;. Thus A, U; are symmetric with
respect to 4 and j. Therefore, we obtain

(5.18) h; (Ui, A, Vi) = g(Ay Ui, Ag, V) = 0.
From (5.17) and (5.18), we have ¢ = 0. Thus we have our theorem. O
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