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GENERIC LIGHTLIKE SUBMANIFOLDS OF

AN INDEFINITE KAEHLER MANIFOLD WITH

A NON-METRIC φ-SYMMETRIC CONNECTION

Dae Ho Jin

Abstract. The notion of a non-metric φ-symmetric connection on semi-
Riemannian manifolds was introduced by Jin [6, 7]. The object of study

in this paper is generic lightlike submanifolds of an indefinite Kaehler

manifold M̄ with a non-metric φ-symmetric connection. First, we pro-
vide several new results for such generic lightlike submanifolds. Next, we

investigate generic lightlike submanifolds of an indefinite complex space
form M̄(c) with a non-metric φ-symmetric connection.

1. Introduction

A lightlike submanifold M of an indefinite almost complex manifold M̄
equipped with an almost complex structure J or an indefinite almost contact
manifold M̄ equipped with an almost contact structure J is called a generic
lightlike submanifold if there exists a screen distribution S(TM) such that

(1.1) J(S(TM)⊥) ⊂ S(TM),

where S(TM)⊥ is the orthogonal complement of S(TM) in the tangent bun-
dle TM̄ of M̄ , i.e., TM̄ = S(TM) ⊕orth S(TM)⊥. The notion of generic
lightlike submanifolds was introduced by Jin-Lee [8] in 2011 and later, studied
by Duggal-Jin [2], Jin [3, 4] and Jin-Lee [9]. Every lightlike hypersurface and
every half lightlike submanifold of codimension 2 of an indefinite almost com-
plex manifold are examples of generic lightlike submanifolds. The geometry of
generic lightlike submanifolds is an generalization of that of lightlike hypersur-
faces and half lightlike submanifolds. Much of its theory will be immediately
generalized in a formal way to general lightlike submanifolds.

A linear connection ∇̄ on a semi-Riemannian manifold (M̄, ḡ) is called a
non-metric φ-symmetric connection if ∇̄ and its torsion tensor T̄ satisfy

(∇̄X̄ ḡ)(Ȳ , Z̄) = − θ(Ȳ )φ(X̄, Z̄)− θ(Z̄)φ(X̄, Ȳ ),(1.2)
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T̄ (X̄, Ȳ ) = θ(Ȳ )JX̄ − θ(X̄)JȲ ,(1.3)

where φ and J are tensor fields of types (0, 2) and (1, 1) respectively, and θ is a
1-form associated with a smooth vector field ζ by θ(X̄) = ḡ(X̄, ζ). Throughout
this paper, denote by X̄, Ȳ and Z̄ the smooth vector fields on M̄ . The notion of
non-metric φ-symmetric connections on an indefinite almost complex or almost
contact manifolds was introduced by Jin [6, 7].

In this paper, we study generic lightlike submanifolds M of an indefinite
Kaehler manifold M̄ = (M̄, ḡ, J) with a non-metric φ-symmetric connection,
in which the tensor field J in (1.3) is identical with the indefinite almost complex
structure J of M̄ and the tensor field φ in (1.2) is identical with the fundamental
2-form associated with the indefinite almost complex structure J , that is,

(1.4) φ(X̄, Ȳ ) = ḡ(JX̄, Ȳ ).

Remark 1.1. Denote by ∇̃ the Levi-Civita connection of an indefinite Kaehler
manifold M̄ with respect to the metric ḡ. It is known [6] that a linear connection
∇̄ on M̄ is a non-metric φ-symmetric connection if and only if ∇̄ satisfies

(1.5) ∇̄X̄ Ȳ = ∇̃X̄ Ȳ + θ(Ȳ )JX̄.

2. Structure equations

Let M̄ = (M̄, ḡ, J) be an indedinite Kaeler manifold, where ḡ is a semi-
Riemannian metric and J is an indefinite almost complex structure such that

(2.1) J2X̄ = −X̄, ḡ(JX̄, JȲ ) = ḡ(X̄, Ȳ ), (∇̃X̄J)Ȳ = 0.

Replacing the Levi-Civita connection ∇̃ by the non-metric φ-symmetric con-
nection ∇̄, the third equation of three equations in (2.1) is reduced to

(2.2) (∇̄X̄J)Ȳ = θ(Ȳ )X̄ + θ(JȲ )JX̄.

Let (M, g) be anm-dimensional lightlike submanifold of an indefinite Kaehler
manifold M̄ of dimension (m+ n). Then the radical distribution Rad(TM) of
M , defined by Rad(TM) = TM ∩ TM⊥, is a vector subbundle of the tangent
bundle TM and the normal bundle TM⊥, of rank r (1 ≤ r ≤ min{m, n}). In
general, there exist two complementary non-degenerate distributions S(TM)
and S(TM⊥) of Rad(TM) in TM and TM⊥, respectively, which are called the
screen distribution and the co-screen distribution of M , such that

TM = Rad(TM)⊕orth S(TM), TM⊥ = Rad(TM)⊕orth S(TM⊥),

where ⊕orth denotes the orthogonal direct sum. Denote by F (M) the algebra
of smooth functions on M and by Γ(E) the F (M) module of smooth sections
of a vector bundle E over M . Also denote by (2.1)i the i-th equation of (2.1).
We use the same notations for any others. Let X, Y, Z and W be the vector
fields on M , unless otherwise specified. We use the following range of indices:

i, j, k, . . . ∈ {1, . . . , r}, a, b, c, . . . ∈ {r + 1, . . . , n}.
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Let tr(TM) and ltr(TM) be complementary vector bundles to TM in TM̄|M
and TM⊥ in S(TM)⊥ respectively and let {N1, . . . , Nr} be a lightlike basis
of ltr(TM)|U , where U is a coordinate neighborhood of M , such that

ḡ(Ni, ξj) = δij , ḡ(Ni, Nj) = 0,

where {ξ1, . . . , ξr} is a lightlike basis of Rad(TM)|U . Then we have

TM̄ = TM ⊕ tr(TM) = {Rad(TM)⊕ tr(TM)} ⊕orth S(TM)

= {Rad(TM)⊕ ltr(TM)} ⊕orth S(TM)⊕orth S(TM⊥).

We say that a lightlike submanifold M = (M, g, S(TM), S(TM⊥)) of M̄ is

(1) r-lightlike submanifold if 1 ≤ r < min{m, n};
(2) co-isotropic submanifold if 1 ≤ r = n < m;
(3) isotropic submanifold if 1 ≤ r = m < n;
(4) totally lightlike submanifold if 1 ≤ r = m = n.

The above three classes (2)∼(4) are particular cases of the class (1) as follows:

S(TM⊥) = {0}, S(TM) = {0}, S(TM) = S(TM⊥) = {0},

respectively. Thus the geometry of r-lightlike submanifolds is more general
than that of the other three types. For this reason, we consider only r-lightlike
submanifolds M with following local quasi-orthonormal field of frames of M̄ :

{ξ1, . . . , ξr , N1, . . . , Nr , Fr+1, . . . , Fm , Er+1, . . . , En},

where {Fr+1, . . . , Fm} and {Er+1, . . . , En} are orthonormal bases of S(TM)
and S(TM⊥), respectively. Denote εa = ḡ(Ea, Ea). Then εaδab = ḡ(Ea, Eb).

Let P be the projection morphism of TM on S(TM). Then the local Gauss-
Weingarten formulae of M and S(TM) are given respectively by

∇̄XY = ∇XY +

r∑
i=1

h`i(X,Y )Ni +

n∑
a=r+1

hsa(X,Y )Ea,(2.3)

∇̄XNi = −A
Ni
X +

r∑
j=1

τij(X)Nj +

n∑
a=r+1

ρia(X)Ea,(2.4)

∇̄XEa = −A
Ea
X +

r∑
i=1

λai(X)Ni +

n∑
b=r+1

µab(X)Eb;(2.5)

∇XPY = ∇∗XPY +

r∑
i=1

h∗i (X,PY )ξi,(2.6)

∇Xξi = −A∗ξiX −
r∑
j=1

σji(X)ξj ,(2.7)

where ∇ and ∇∗ are induced linear connections on M and S(TM) respectively,
h`i and hsa are called the local second fundamental forms on M , h∗i are called
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the local second fundamental forms on S(TM). A
Ni
, A

Ea
and A∗ξi are called

the shape operators, and τij , ρia, λai, µab and σji are 1-forms on TM .
Let M be a generic lightlike submanifold of M̄ . From (1.1) we show that

J(Rad(TM)), J(ltr(TM)) and J(S(TM⊥)) are vector subbundles of S(TM).
Thus there exist two non-degenerate almost complex distributions Ho and H
with respect to J , i.e., J(Ho) = Ho and J(H) = H, such that

S(TM) = {J(Rad(TM))⊕ J(ltr(TM))} ⊕orth J(S(TM⊥))⊕orth Ho,

H = Rad(TM)⊕orth J(Rad(TM))⊕orth Ho.

In this case, the tangent bundle TM of M is decomposed as follow:

(2.8) TM = H ⊕ J(ltr(TM))⊕orth J(S(TM⊥)).

Consider 2r-th local null vector fields Ui and Vi, (n − r)-th local non-null
unit vector fields Wa, and their 1-forms ui, vi and wa defined by

Ui = −JNi, Vi = −Jξi, Wa = −JEa,(2.9)

ui(X) = g(X,Vi), vi(X) = g(X,Ui), wa(X) = εag(X,Wa).(2.10)

Denote by S the projection morphism of TM on H and by F the tensor field
of type (1, 1) globally defined on M by F = J ◦ S. Then JX is expressed as

(2.11) JX = FX +

r∑
i=1

ui(X)Ni +

n∑
a=r+1

wa(X)Ea.

Let ηi be the 1-forms such that ηi(X) = ḡ(X,Ni). From (2.11), we see that

ui(FX) = 0, wa(FX) = 0, vi(FX) = −ηi(X),(2.12)

FUi = 0, FWa = 0, FVi = ξi.

Applying J to (2.11) and using (2.1)1, (2.9) and (2.12), we have

(2.13) F 2X = −X +

r∑
i=1

ui(X)Ui +

n∑
a=r+1

wa(X)Wa.

Substituting (2.11) into (2.1)2 and using (2.9) and (2.10), we have

g(FX,FY ) = g(X,Y )−
r∑
i=1

{ui(X)vi(Y ) + ui(Y )vi(X)}(2.14)

−
n∑

a=r+1

εawa(X)wa(Y ).

In the following, we say that F is the structure tensor field of M .
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3. Equations related to non-metric φ-symmetric connection

Denote by αi, βi and γa the smooth functions on M̄ given by

αi = θ(ξi), βi = θ(Ni), γa = θ(Ea).

Using (1.2), (1.3), (1.4), (2.3), (2.9) and (2.11), we see that

(∇Xg)(Y,Z) =

r∑
i=1

{h`i(X,Y )ηi(Z) + h`i(X,Z)ηi(Y )}(3.1)

− θ(Y )φ(X,Z)− θ(Z)φ(X,Y ),

T (X,Y ) = θ(Y )FX − θ(X)FY,(3.2)

h`i(X,Y )− h`i(Y,X) = θ(Y )ui(X)− θ(X)ui(Y ),(3.3)

hsa(X,Y )− hsa(Y,X) = θ(Y )wa(X)− θ(X)wa(Y ),(3.4)

φ(X,Y ) = g(FX, Y ) +

r∑
i=1

ui(X)ηi(Y ),(3.5)

φ(X, ξi) = ui(X), φ(X,Ni) = vi(X), φ(X,Ea) = εawa(X),(3.6)

φ(X,Vi) = 0, φ(X,Ui) = −ηi(X), φ(X,Wa) = 0.

From the facts that h`i(X,Y ) = ḡ(∇̄XY, ξi) and εah
s
a(X,Y ) = ḡ(∇̄XY,Ea),

we know that h`i and hsa are independent of the choice of S(TM). The above
local second fundamental forms are related to their shape operators by

h`i(X,Y ) = g(A∗ξiX,Y ) + ui(X)θ(Y ) + αig(FX, Y )(3.7)

−
r∑

k=1

{h`k(X, ξi)− αiuk(X)}ηk(Y ),

εah
s
a(X,Y ) = g(A

Ea
X,Y ) + εawa(X)θ(Y ) + γag(FX, Y )(3.8)

−
r∑

k=1

{λak(X)− γauk(X)}ηk(Y ),

h∗i (X,PY ) = g(A
Ni
X,PY ) + vi(X)θ(PY ) + βig(FX,PY ).(3.9)

Applying ∇̄X to g(ξi, ξj) = 0, ḡ(ξi, Ea) = 0, ḡ(Ni, Nj) = 0, ḡ(Ni, Ea) = 0,
ḡ(Ea, Eb) = εaδab and ḡ(Ni, ξj) = δij by turns, we obtain

h`i(X, ξj) + h`j(X, ξi) = αiuj(X) + αjui(X),

hsa(X, ξi) = −εa{λai(X)− γaui(X)}+ αiwa(X),

ηj(ANi
X) + ηi(ANj

X) = −βivj(X)− βjvi(X),(3.10)

ηi(AEa
X) = εa{ρia(X)− βiwa(X)} − γavi(X),

εb{µab(X)− γawb(X)}+ εa{µba(X)− γbwa(X)} = 0,

τij(X) = σij(X) + αjvi(X) + βiuj(X).
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As a consequence of (3.3) and (3.10)1, it follows that

(3.11) h`i(X, ξi) = αiui(X), h`i(ξi, X) = 0.

By using (3.3), (3.7), (3.10)1 and (3.11)2, we deduce

(3.12) h`i(ξj , ξk) = 0, A∗ξiξi = αiVi.

Applying ∇̄X to (2.9)1, 2, 3 and (2.11) by turns and using (2.2), (2.3)∼ (2.7),
(2.9)∼ (2.11) and (3.7)∼ (3.9), we have

h`j(X,Ui) = uj(ANi
X) + θ(Ui)uj(X)

= h∗i (X,Vj) + θ(Ui)uj(X)− θ(Vj)vi(X),

hsa(X,Ui) = wa(A
Ni
X) + θ(Ui)wa(X)

= εa{h∗i (X,Wa)− θ(Wa)vi(X)}+ θ(Ui)wa(X),

h`j(X,Vi) = uj(A
∗
ξiX) + θ(Vi)uj(X)(3.13)

= h`i(X,Vj) + θ(Vi)uj(X)− θ(Vj)ui(X),

hsa(X,Vi) = wa(A∗ξiX) + θ(Vi)wa(X)

= εa{h`i(X,Wa)− θ(Wa)ui(X)}+ θ(Vi)wa(X),

εb{hsb(X,Wa)− θ(Wa)wb(X)} = εa{hsa(X,Wb)− θ(Wb)wa(X)},

∇XUi = F (A
Ni
X) +

r∑
j=1

τij(X)Uj +

n∑
a=r+1

ρia(X)Wa(3.14)

− βiX + θ(Ui)FX,

∇XVi = F (A∗ξiX)−
r∑
j=1

σji(X)Vj +

r∑
j=1

h`j(X, ξi)Uj(3.15)

+

n∑
a=r+1

hsa(X, ξi)Wa − αiX + θ(Vi)FX,

∇XWa = F (A
Ea
X) +

r∑
i=1

λai(X)Ui +

n∑
b=r+1

µab(X)Wb(3.16)

− γaX + θ(Wa)FX,

(∇XF )(Y ) =

r∑
i=1

ui(Y )A
Ni
X +

n∑
a=r+1

wa(Y )A
Ea
X(3.17)

−
r∑
i=1

h`i(X,Y )Ui −
n∑

a=r+1

hsa(X,Y )Wa

+ θ(Y )X + θ(JY )FX.

Definition. We say that a lightlike submanifold M of a semi-Riemannian
manifold (M̄, ḡ) is irrotational [10] if ∇̄Xξi ∈ Γ(TM) for all i ∈ {1, . . . , r}.
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Remark 3.1. From (2.3), the above definition is equivalent to

(3.18) h`j(X, ξi) = 0, hsa(X, ξi) = 0.

From (3.10)1, 2, we see that if M is irrotational, then we have

(3.19) αi = 0, λai(X) = γaui(X).

4. Recurrent and Lie recurrent generic lightlike submanifolds

Definition. The structure tensor field F of M is said to be recurrent [5] if
there exists a 1-form $ on M such that

(∇XF )Y = $(X)FY.

A lightlike submanifold M of an indefinite Kaehler manifold M̄ is called recur-
rent if it admits a recurrent structure tensor field F .

Theorem 4.1. Let M be a recurrent generic lightlike submanifold of an indef-
inite Kaehler manifold M̄ with a non-metric φ-symmetric connection. Then

(1) F is parallel with respect to the induced connection ∇ on M ,
(2) M is irrotational,
(3) the 1-form θ vanishes, i.e., θ = 0, on M . Thus the indeced connection
∇ on M is a torsion-free non-metric connection,

(4) H, J(ltr(TM)) and J(S(TM⊥)) are parallel distributions on M ,
(5) M is locally a product manifold

M = Mr ×Mn−r ×Mm−n,

where Mr, Mn−r and Mm−n are the leaves of the parallel distributions
J(ltr(TM)), J(S(TM⊥)) and H respectively.

Proof. (1) From the above definition and (3.17), we get

$(X)FY =

r∑
i=1

ui(Y )A
Ni
X +

n∑
a=r+1

wa(Y )A
Ea
X(4.1)

−
r∑
i=1

h`i(X,Y )Ui −
n∑

a=r+1

hsa(X,Y )Wa

+ θ(Y )X + θ(JY )FX.

Replacing Y by ξj and using the fact that Fξj = −Vj , we obtain

(4.2) $(X)Vj =

r∑
i=1

h`i(X, ξj)Ui +

n∑
a=r+1

hsa(X, ξj)Wa − αjX + θ(Vj)FX.

Taking the scalar product with Ni to this equation, we obtain

αjηi(X)− θ(Vj)vi(X) = 0.

Taking X = ξj and X = Vj by turns to this equation, we have

(4.3) αi = 0, θ(Vi) = 0, ∀ i.
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Taking the scalar product with Uj to (4.2), we get $ = 0. It follows that
∇XF = 0. Therefore, F is parallel with respect to the connection ∇.

(2) Taking the scalar product with Vi and Wa to (4.2) by turns and using
(4.3), we get two equations in (3.18). Thus M is irrotational.

(3) Replacing Y by Vj to (4.1) and using (3.3), (3.4) and (4.3), we have

(4.4) h`i(X,Vj) = h`i(Vj , X) = 0, hsa(X,Vj) = hsa(Vj , X) = 0.

Taking Y = Ui and Y = Wa to (4.1) such that $ = 0 by turns, we have

A
Ni
X =

r∑
k=1

h`k(X,Ui)Uk +

n∑
a=r+1

hsa(X,Ui)Wa − θ(Ui)X − βiFX,(4.5)

A
Ea
X =

r∑
i=1

h`i(X,Wa)Ui +

n∑
b=r+1

hsb(X,Wa)Wb − θ(Wa)X − γaFX.(4.6)

Taking the scalar product with Nj and Uj to (4.5) by turns, we obtain

ηj(ANi
X) = −θ(Ui)ηj(X)− βivj(X),

g(A
Ni
X,Uj) = −θ(Ui)vj(X) + βiηj(X).

Taking i = j to the first equation and using (3.10)3, we have θ(Ui)ηi(X) = 0.
It follows that θ(Ui) = 0. Replacing PY by Uj to (3.9) and using the second
equation, we have h∗i (X,Uj) = 0. Therefore

(4.7) θ(Ui) = 0, ηj(ANi
X) = −βivj(X), h∗i (X,Uj) = 0.

Taking the scalar product with Ni and Ui to (4.6) by turns, we obtain

ηi(AEa
X) = −θ(Wa)ηi(X)− γavi(X),

g(A
Ea
X,Ui) = −θ(Wa)vi(X) + γaηi(X).

By using (3.8), (3.10)4 and (4.7)1, the last two equations reduce to

ρia(X) = βiwa(X)− εaθ(Wa)ηi(X),

hsa(X,Ui) = −εaθ(Wa)vi(X).

Let X = Vi to the second equation and using (4.4)2, we get θ(Wa) = 0. Thus

θ(Wa) = 0, ηi(AEa
X) = −γavi(X),(4.8)

ρia(X) = βiwa(X), hsa(X,Ui) = 0.

Taking the scalar product with Ni to (4.1) and using (4.7)2 and (4.8)2, we get

θ(Y )ηi(X) + {θ(JY )−
r∑

k=1

βkuk(Y )−
n∑

a=r+1

γawa(Y )}vi(X) = 0.

Replacing X by ξi and Vi to this equation by turns, we obtain

(4.9) θ(X) = 0, θ(JY ) =

r∑
k=1

βkuk(Y ) +

n∑
a=r+1

γawa(Y ).

As θ = 0 on M , from (3.1) and (3.2), ∇ is a torsion-free non-metric connection.



GENERIC LIGHTLIKE SUBMANIFOLDS OF A KAEHLER MANIFOLD 1055

(4) Applying F to (4.5) and (4.6) and using (2.13), (4.7)1 and (4.8)1, we get

F (A
Ni
X)− βiX = −

r∑
j=1

βiuj(X)Uj −
n∑

a=r+1

βiwa(X)Wa,

F (A
Ea
X)− γaX = −

r∑
i=1

γaui(X)Ui −
n∑

b=r+1

γawb(X)Wb.

Using these equations, (3.19)2 and (4.8)3, (3.14) and (3.16) are reduced to

∇XUi =

r∑
j=1

{τij(X)− βiuj(X)}Uj ,(4.10)

∇XWa =

n∑
b=r+1

{µab(X)− γawb(X)}Wb.(4.11)

It follows from (4.10) and (4.11) that J(ltr(TM)) and J(S(TM⊥)) are parallel
distributions on M with respect to the connection ∇ on M , that is,

∇XUi ∈ Γ(J(ltr(TM))), ∇XWa ∈ Γ(J(S(TM⊥))).

On the other hand, from (3.13)4, (4.4)2 and (4.9)1, we see that

(4.12) h`i(X,Wa) = 0.

Taking Y = FZ to (4.1) and using (4.9)1, 2 and u(FZ) = w(FZ) = 0, we get

(4.13) h`i(X,FZ) = 0, hsa(X,FZ) = 0.

For any X ∈ Γ(TM) and Z ∈ Γ(Ho), by using (2.7), (2.14), (3.1), (3.5),
(3.6)4, (3.7), (4.3), (4.4)1, (4.9)1, (4.12) and (4.13), we derive

g(∇Xξj , Vi) = −h`j(X,Vi) + θ(Vi)uj(X) = 0,

g(∇Xξj ,Wa) = −h`j(X,Wa) + θ(Wa)uj(X) = 0,

g(∇XVj , Vi) = h`i(X, ξj)− αjui(X) = 0,

g(∇XVj ,Wa) = hsa(X, ξj)− εaαjwa(X) = 0,

g(∇XZ, Vi) = h`i(X,FZ)− θ(FZ)ui(X) = 0,

g(∇XZ,Wa) = hsa(X,FZ)− εaθ(FZ)wa(X) = 0.

It follows that H is also a parallel distribution on M , that is,

∇XY ∈ Γ(H), ∀X ∈ Γ(TM), ∀Y ∈ Γ(H).

(5) As J(ltr(TM)), J(S(TM⊥)) andH are parallel distributions and satisfed
(2.8), by the decomposition theorem of de Rham [1], M is locally a product
manifold M = Mr ×Mn−r ×Mm−n, where Mr, Mn−r and Mm−n are the
leaves of J(ltr(TM)), J(S(TM⊥)) and H respectively. �



1056 D. H. JIN

Definition. The structure tensor field F of M is said to be Lie recurrent [5]
if there exists a 1-form ϑ on M such that

(L
X
F )Y = ϑ(X)FY,

where L
X

denotes the Lie derivative on M with respect to X. In case ϑ = 0,
we say that F is Lie parallel. A lightlike submanifold M is called Lie recurrent
if it admits a Lie recurrent structure tensor field F .

Theorem 4.2. Let M be a Lie recurrent generic lightlike submanifold of an in-
definite Kaehler manifold M̄ with a non-metric φ-symmetric connection. Then

(1) F is Lie parallel,
(2) τij and ρia are satisfied τij ◦ F = 0 and ρia ◦ F = 0. Moreover,

τij(X) = −
r∑

k=1

ηk(A
Ni
Vj)uk(X),

ρia(X) =

r∑
k=1

ρia(Uk)uk(X) +

n∑
b=r+1

ρia(Wb)wb(X),

(3) αi = 0 for all i, and the shape operators A∗ξi for all i satisfy

(4.14) A∗ξiUj = 0, A∗ξiVj = −F (A∗ξiξj).

Proof. (1) As (L
X
F )Y = [X,FY ]− F [X,Y ], we obtain

ϑ(X)FY = −∇FYX + F∇YX(4.15)

+

r∑
i=1

ui(Y )A
Ni
X +

n∑
a=r+1

wa(Y )A
Ea
X

−
r∑
i=1

{h`i(X,Y )− θ(Y )ui(X)}Ui

−
n∑

a=r+1

{hsa(X,Y )− θ(Y )wa(X)}Wa

+ {
r∑
i=1

βiui(Y ) +

n∑
a=r+1

γawa(Y )}FX,

by (2.13), (3.2) and (3.17). Taking Y = ξj and Y = Vj by turns, we have

−ϑ(X)Vj = ∇VjX + F∇ξjX(4.16)

−
r∑
i=1

{h`i(X, ξj)− αjui(X)}Ui

−
n∑

a=r+1

{hsa(X, ξj)− αjwa(X)}Wa,

ϑ(X)ξj = −∇ξjX + F∇Vj
X(4.17)
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−
r∑
i=1

{h`i(X,Vj)− θ(Vj)ui(X)}Ui

−
n∑

a=r+1

{hsa(X,Vj)− θ(Vj)wa(X)}Wa.

Taking the scalar product with Ui to (4.16) and Ni to (4.17) by turns, we get

−δijϑ(X) = g(∇Vj
X,Ui)− ḡ(∇ξjX,Ni),

δijϑ(X) = g(∇Vj
X,Ui)− ḡ(∇ξjX,Ni).

Comparing the last two equations, we get ϑ = 0. Thus F is Lie parallel.
(2) Taking the scalar product with Ni to (4.16) such that X = Wa and using

(3.4), (3.8), (3.10)4 and (3.16), we get hsa(Ui, Vj) = ρia(ξj). On the other hand,
taking the scalar product with Wa to (4.17) such that X = Ui and using (3.14),
we obtain hsa(Ui, Vj) = −ρia(ξj). Thus we have ρia(ξj) = 0 and hsa(Ui, Vj) = 0.

Taking the scalar product with Vi to (4.16) such that X = Wa and using
(3.3), (3.4), (3.10)2, (3.13)4 and (3.16), we obtain λai(Vj) = −λaj(Vi). Next,
taking the scalar product with Wa to (4.16) such that X = Vi and using (3.15),
we have hsa(Vi, ξj) = hsa(Vj , ξi). As hsa(Vj , ξi) = −εaλai(Vj) by (3.10)2, we see
that λai(Vj) = λaj(Vi). Thus we obtain λai(Vj) = 0 and hsa(Vi, ξj) = 0.

Taking the scalar product with Wa to (4.16) such that X = ξi and using
(2.7), (3.4), (3.7) and (3.10)2, we get h`i(Vj ,Wa) = λai(ξj). Next, taking the
scalar product with Vi to (4.17) such that X = Wa and using (3.3) and (3.16),
we get h`i(Vj ,Wa) = −λai(ξj). Thus λai(ξj) = 0 and h`i(Vj ,Wa) = 0.

Taking the scalar product with Ui to (4.16) such that X = Wa and using
(3.4), (3.8), (3.10)2, 4 and (3.16), we have εaρia(Vj) = λaj(Ui) − γaδij . Next,
taking the scalar product with Wa to (4.16) such that X = Ui and using
(3.10)2 and (3.14), we obtain εaρia(Vj) = −λaj(Ui) + γaδij . Thus ρia(Vj) = 0,
λaj(Ui) = γaδij and hsa(Ui, ξj) = 0. Summarizing the above results, we get

ρia(ξj) = 0, ρia(Vj) = 0, λai(Vj) = 0, λai(ξj) = 0,

λai(Uj) = γaδij , hsa(Ui, Vj) = 0, hsa(Ui, ξj) = h∗i (ξj ,Wa) = 0,(4.18)

h`i(Vj ,Wa) = hsa(Vj , Vi) = 0, hsa(Vi, ξj) = h`i(Wa, ξj) = 0.

Taking the scalar product with Ni to (4.15) and using (3.10)4, we have

− ḡ(∇FYX,Ni) + g(∇YX,Ui)(4.19)

+

r∑
k=1

uk(Y ){ḡ(A
Nk
X,Ni) + βkvi(X)}

+

n∑
a=r+1

εawa(Y ){ρia(X)− βiwa(X)} = 0.
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Replacing X by ξj to (4.19) and using (2.7), (3.7), (3.10)6 and (4.18)1, we have

(4.20) h`j(X,Ui)− θ(Ui)uj(X) =

r∑
k=1

uk(X)ḡ(A
Nk
ξj , Ni) + τij(FX).

Taking X = Uk to this equation and using (3.13)1, we have

(4.21) h∗i (Uk, Vj) = ḡ(A
Nk
ξj , Ni).

Taking X = Ui to (4.15) and using (2.13), (3.3), (3.4) and (3.13)1, 2, we get
r∑

k=1

uk(Y )A
Nk
Ui +

n∑
a=r+1

wa(Y )A
Ea
Ui −ANi

Y(4.22)

− F (A
Ni
FY )−

r∑
j=1

τij(FY )Uj −
n∑

a=r+1

ρia(FY )Wa = 0.

Taking the scalar product with Vj to (4.22) and using (3.8), (3.9), (3.10)3,
(3.13)1, (4.18)6 and (4.21), we obtain

h`j(X,Ui)− θ(Ui)uj(X) = −
r∑

k=1

uk(X)ḡ(A
Nk
ξj , Ni)− τij(FX).

Comparing this equation with (4.20), we obtain

(4.23) h`j(X,Ui) = θ(Ui)uj(X), τij(FX) +

r∑
k=1

uk(X)ḡ(A
Nk
ξj , Ni) = 0.

Replacing X by Uh to (4.23)2, we have ḡ(A
Nk
ξj , Ni) = 0. Thus we see that

τij(FX) = 0.

From (4.23)1, we have h`j(FX,Ui) = 0. Replacing X by Vj to (4.19) and using
(3.7), (3.10)3, 6, (3.15) and (4.18)2, we obtain

τij(X) =

r∑
k=1

{ηi(ANk
Vj) + βkδij + βiδkj}uk(X)

= −
r∑

k=1

ηk(A
Ni
Vj)uk(X).

Replacing Y by Wa to (4.22), we obtain A
Ea
Ui = A

Ni
Wa. Taking the scalar

product with Uj to this and using (3.4), (3.8), (3.9) and (3.13)2, we have

(4.24) h∗i (Wa, Uj) = εah
s
a(Ui, Uj) = εah

s
a(Uj , Ui) = h∗i (Uj ,Wa).

Taking the scalar product with Wa to (4.22) and using (3.8) and (3.9), we get

εaρia(FY ) = − h∗i (Y,Wa) + θ(Wa)vi(Y )

+

r∑
k=1

uk(Y )h∗k(Ui,Wa) +

n∑
b=r+1

εbwb(Y )hsb(Ui,Wa).
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Taking the scalar product with Ui to (4.15) and then, taking X = Wa and
using (3.4), (3.8), (3.9), (3.10)4, (3.13)2, (3.16) and (4.24), we obtain

εaρia(FY ) = h∗i (Y,Wa)− θ(Wa)vi(Y )

−
r∑

k=1

uk(Y )h∗k(Ui,Wa)−
n∑

b=r+1

εbwb(Y )hsb(Ui,Wa).

Comparing the last two equations, we obtain

ρia(FY ) = 0.

Replacing X by Wa to (4.19) and using (3.8), (3.10)4 and (3.16), we have

εaρia(X) = − εahsa(FX,Ui)

+

r∑
k=1

uk(X)ḡ(A
Nk
Wa, Ni) +

n∑
b=r+1

εbwb(X)ρib(Wa).

Taking X = Uk, X = Wb and X = FY to this equation by turns, we have

εaρia(Uk) = ḡ(A
Nk
Wa, Ni), εaρia(Wb) = εbρib(Wa),

hsa(Y,Ui) =

r∑
j=1

uj(Y )hsa(Uj , Ui) +

n∑
a=r+1

wa(Y )hsa(Wa, Ui).

Replacing Y by FX to the last equation, we have hsa(FX,Ui) = 0. Thus

ρia(X) =

r∑
k=1

ρia(Uk)uk(X) +

n∑
b=r+1

ρia(Wb)wb(X).

(4) Replacing Y by Uj to (3.3) and using (4.23)1, we obtain

(4.25) h`i(Uj , X) = θ(X)δij , h`i(Uj , ξk) = 0.

Taking X = Uj to (3.7) and using (4.25)1, 2, we get g(A∗ξiUj , X) = −αiηj(X).
Replacing X by ξk to this equation, we have

(4.26) αi = 0, ∀ i.
Thus g(A∗ξiUj , X) = 0. As S(TM) is non-degenerate, we get A∗ξiUj = 0.

Taking X = ξi to (4.16) and using (3.10)2, 6, (3.12)1, (4.18)3, 4 and the fact
that τij(ξk) = τij(Vj) = 0, we get A∗ξiVj = −F (A∗ξiξj). �

5. Generic submanifolds of an indefinite complex space form

Definition. An indefinite complex space form M̄(c) is a connected indefinite
Kaehler manifold of constant holomorphic sectional curvature c such that

R̃(X̄, Ȳ )Z̄ =
c

4
{ḡ(Ȳ , Z̄)X̄ − ḡ(X̄, Z̄)Ȳ(5.1)

+ ḡ(JȲ , Z̄)JX̄ − ḡ(JX̄, Z̄)JȲ + 2ḡ(X̄, JȲ )JZ̄},

where R̃ denote the curvature tensor of the Levi-Civita connection ∇̃ on M̄ .
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Let R̄ be the curvature tensor of the non-metric φ-symmetric connection ∇̄
on M̄ . By directed calculations from (1.3) and (1.5), we see that

(5.2) R̄(X̄, Ȳ )Z̄ = R̃(X̄, Ȳ )Z̄ + (∇̄X̄θ)(Z̄)JȲ − (∇̄Ȳ θ)(Z̄)JX̄.

Denote by R and R∗ the curvature tensors of the induced connections ∇ and
∇∗ on M and S(TM) respectively. Using the Gauss-Weingarten formulae, we
have the Gauss equations for M and S(TM) such that

R̄(X,Y )Z = R(X,Y )Z +

r∑
i=1

{h`i(X,Z)A
Ni
Y − h`i(Y, Z)A

Ni
X}(5.3)

+

n∑
a=r+1

{hsa(X,Z)A
Ea
Y − hsa(Y, Z)A

Ea
X}

+

r∑
i=1

{(∇Xh`i)(Y,Z)− (∇Y h`i)(X,Z)

+

r∑
j=1

[τji(X)h`j(Y, Z)− τji(Y )h`j(X,Z)]

+

n∑
a=r+1

[λai(X)hsa(Y,Z)− λai(Y )hsa(X,Z)]

− θ(X)h`i(FY,Z) + θ(Y )h`i(FX,Z)}Ni

+

n∑
a=r+1

{(∇Xhsa)(Y, Z)− (∇Y hsa)(X,Z)

+

r∑
i=1

[ρia(X)h`i(Y,Z)− ρia(Y )h`i(X,Z)]

+

n∑
b=r+1

[µba(X)hsb(Y,Z)− µba(Y )hsb(X,Z)]

− θ(X)hsa(FY,Z) + θ(Y )hsa(FX,Z)}Ea,

R(X,Y )PZ = R∗(X,Y )PZ +

r∑
i=1

{h∗i (X,PZ)A∗ξiY − h
∗
i (Y, PZ)AξiX}(5.4)

+

r∑
i=1

{(∇Xh∗i )(Y, PZ)− (∇Y h∗i )(X,PZ)

+

r∑
k=1

[σik(Y )h∗k(X,PZ)− σik(X)h∗k(Y, PZ)]

− θ(X)h∗i (FY, PZ) + θ(Y )h∗i (FX,PZ)}ξi.
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Comparing the tangential components of (5.2) and (5.3), we obtain

R(X,Y )Z =

r∑
i=1

{h`i(Y, Z)A
Ni
X − h`i(X,Z)A

Ni
Y }(5.5)

+

n∑
a=r+1

{hsa(Y,Z)A
Ea
X − hsa(X,Z)A

Ea
Y }

+ (∇̄Xθ)(Z)FY − (∇̄Y θ)(Z)FX

+
c

4
{g(Y,Z)X − g(X,Z)Y

+ ḡ(JY, Z)FX − ḡ(JX,Z)FY + 2ḡ(X, JY )FZ},
due to (5.1). Taking the scalar product with Ni to (5.4) and then, substituting
(5.5) into the resulting equation, we have

(∇Xh∗i )(Y, PZ)− (∇Y h∗i )(X, PZ)(5.6)

+

r∑
j=1

{σij(Y )h∗j (X,PZ)− σij(X)h∗j (Y, PZ)}

+

r∑
j=1

{h`j(X,PZ)ηi(ANj
Y )− h`j(Y, PZ)ηi(ANj

X)}

+

n∑
a=r+1

{hsa(X,PZ)ηi(AEa
Y )− hsa(Y, PZ)ηi(AEa

X)}

− θ(X)h∗i (FY, PZ) + θ(Y )h∗i (FX,PZ)

− (∇̄Xθ)(PZ)vi(Y ) + (∇̄Y θ)(PZ)vi(X)

=
c

4
{g(Y, PZ)ηi(X)− g(X,PZ)ηi(Y )

+ vi(X)ḡ(JY, PZ)− vi(Y )ḡ(JX,PZ) + 2vi(PZ)ḡ(X, JY )}.

Theorem 5.1. Let M be a generic lightlike submanifold of an indefinite com-
plex space form M̄(c) with a non-metric φ-symmetric connection ∇̄. If one of
the following four statements

(1) M is recurrent,
(2) Uis are parallel with respect to the induced connection ∇, or
(3) Vis are parallel with respect to the induced connection ∇

is satisfied, then M̄(c) is flat, i.e., c = 0.

Proof. (1) Applying ∇̄X to (4.7)1 and using (2.3), (4.8)4 and (4.9)1, we get

(5.7) (∇̄Xθ)(Ui) = −
r∑

k=1

βkh
`
k(X,Ui).

Applying ∇X to (4.7)3: h∗i (Y,Uj) = 0 and using (4.10), we obtain

(∇Xh∗i )(Y, Uj) = 0.
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Taking PZ = Uj to (5.6) and using (4.7)2, (4.8)4 and (5.7), we get

c

4
{vj(Y )ηi(X)− vj(X)ηi(Y ) + vi(Y )ηj(X)− vi(X)ηj(Y )} = 0.

Taking X = ξi and Y = Vj to this equation, we get c = 0.
(2) As ∇XUi = 0, taking the scalar product with Uj to (3.14), we get

ηj(ANi
X) + βivj(X) + θ(Ui)ηj(X) = 0.

Taking the skew-symmetric part with respect to i and j and using (3.10)3, we
have θ(Ui)ηj(X) + θ(Uj)ηi(X) = 0. Taking X = ξj to this result, we obtain

(5.8) θ(Ui) = 0, ηj(ANi
X) = −βivj(X).

Applying ∇̄X to θ(Ui) = 0 and using (2.3) and the fact that ∇XUi = 0, we get

(5.9) (∇̄Xθ)(Ui) = −
r∑

k=1

βkh
`
k(X,Ui)−

n∑
a=r+1

γah
s
a(X,Ui).

Taking the scalar product with Wa and Nj to (3.14) and using (5.8)1, we have

(5.10) ρia(X) = βiwa(X), h∗i (X,Uj) = 0.

From (3.10)4 and (5.10)1, we see that

(5.11) ηi(AEa
X) = −γavi(X).

Applying ∇Y to (5.10)2 and using the fact that ∇XUj = 0, we obtain

(∇Xh∗i )(Y, Uj) = 0.

Replacing PZ by Uj to (5.6) and using (5.8)2, (5.9), (5.10)2, (5.11) and the
last equation, we have

c

4
{vj(Y )ηi(X)− vj(X)ηi(Y ) + vi(Y )ηj(X)− vi(X)ηj(Y )} = 0.

Taking X = ξi and Y = Vj to this equation, we have c = 0.
(3) As ∇XVi = 0, taking the scalar product with Vj , Wa and Nj to (3.15)

by turns and using (3.7) and (3.13)1, we get

(5.12) h`j(X, ξi) = αiuj(X), hsa(X, ξi) = αiwa(X), h∗i (Y, Vj) = 0.

Taking Y = ξi to (3.3) and (3.4) by turns and using (5.12)1, 2, we get

(5.13) h`j(ξi, X) = 0, hsa(ξi, X) = 0.

Applying ∇X to (5.12)3 and using the fact that ∇XVj = 0, we have

(∇Xh∗i )(Y, Vj) = 0.

Taking PZ = Vj to (5.6) and using (5.12)3 and the last equation, we get

r∑
j=1

{h`k(X,Vj)ηi(ANk
Y )− h`k(Y, Vj)ηi(ANk

X)}
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+

n∑
a=r+1

{hsa(X,Vj)ηi(AEa
Y )− hsa(Y, Vj)ηi(AEa

X)}

− (∇̄Xθ)(Vj)vi(Y ) + (∇̄Y θ)(Vj)vi(X)

=
c

4
{uj(Y )ηi(X)− uj(X)ηi(Y ) + 2δij ḡ(X, JY )}.

Taking X = ξi and Y = Uj to this equation and using (5.13), we have

−
r∑

k=1

h`k(Uj , Vj)ηi(ANk
ξi)−

n∑
a=r+1

hsa(Uj , Vj)ηi(AEa
ξi) =

3

4
c.

By using (3.3), (3.4), (3.10)4, (3.13)1, 4, and (5.12)3, we see that

h`k(Uj , Vj) = h`k(Vj , Uj) + θ(Vk) = h∗j (Vj , Vk) = 0,

hsa(Uj , Vj) = εa{h`j(Uj ,Wa)− θ(Wa)}
= εah

`
j(Wa, Uj) = εah

∗
j (Wa, Vj) = 0.

From the last three equations, we see that c = 0. �

Theorem 5.2. Let M be a Lie recurrent generic lightlike submanifold of an
indefinite complex space form M̄(c) with a non-metric φ-symmetric connection
∇̄. If each A

Ni
is S(TM)-valued, then M̄(c) is flat, i.e., c = 0.

Proof. In general, using the Gauss-Weingarten formulae (2.6) and (2.7) for the
screen distribution S(TM), we have the Codazzi equation for S(TM):

R(X,Y )ξi = −∇∗X(A∗ξiY ) +∇∗Y (A∗ξiX) +A∗ξi [X, Y ](5.14)

+

r∑
j=1

{σji(Y )A∗ξjX − σji(X)A∗ξjY }

+

r∑
j=1

{h∗j (Y,A∗ξiX)− h∗j (X,A∗ξiY )− 2dσji(X,Y )

+

r∑
k=1

[σjk(X)σki(Y )− σjk(Y )σki(X)]}ξj .

Assume that each A
Ni

is S(TM)-valued. As ηk(A
Ni
X) = 0, from the first

equation of (2) in Theorem 4.2 we have τij = 0. From (3.10)3, we obtain

βivj(X) + βjvi(X) = 0.

Taking X = Vj to this equation, we obtain βi = 0. As τij = αi = βi = 0, from
(3.10)6, we see that σij = 0. Summing up these results

(5.15) αi = 0, βi = 0, τij = 0, σij = 0.
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Applying ∇̄X to θ(ξi) = 0 and using (2.3), (3.7), (3.10)2 and (5.15), we get

(5.16) (∇̄Xθ)(ξi) = θ(A∗ξiX) +

n∑
a=r+1

εaγa{λai(X)− γaui(X)}.

Taking the scaler product with Nj to (5.5) with Z = ξi and then, comparing
this result with the radical component of (5.14) and using (5.16), we obtain

h∗j (Y,A
∗
ξiX)− h∗j (X,A∗ξiY ) =

c

4
{ui(Y )vj(X)− ui(X)vj(Y )}

−
n∑

a=r+1

{λai(X)− γaui(X)}ρja(Y )

+

n∑
a=r+1

{λai(Y )− γaui(Y )}ρja(X)

+ θ(A∗ξiX)vj(Y )− θ(A∗ξiY )vj(X).

Taking X = Ui and Y = Vj and using (4.14)1 and (4.18)2, 3, we obtain

(5.17) h∗j (Ui, A
∗
ξiVj) =

c

4
.

Replacing X by ξj to (3.7) and using (3.12)1, we have

h`i(ξj , X) = g(A∗ξiξj , X).

Taking Y = ξj to (3.3), we obtain h`i(X, ξj) = h`i(ξj , X) since αi = 0. Due to
(3.10)1, h`i(X, ξj) are skew-symmetric. Thus h`i(ξj , X) are also skew-symmetric
with respect to i and j. It follow that A∗ξiξj = −A∗ξjξi, i.e., A

∗
ξi
ξj are skew-

symmetric with respect to i and j. From this result and (4.14)2, we see that
A∗ξiVj are skew-symmetric with respect to i and j. On the other hand, taking

Y = Uj to (4.18), we have A
Ni
Uj = A

Nj
Ui. Thus A

Ni
Uj are symmetric with

respect to i and j. Therefore, we obtain

(5.18) h∗j (Ui, A
∗
ξiVj) = g(A

Nj
Ui, A

∗
ξiVj) = 0.

From (5.17) and (5.18), we have c = 0. Thus we have our theorem. �
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