• Title/Summary/Keyword: Riemannian

Search Result 543, Processing Time 0.025 seconds

CONSTANT NEGATIVE SCALAR CURVATURE ON OPEN MANIFOLDS

  • Kim, Seong-Tag
    • Bulletin of the Korean Mathematical Society
    • /
    • v.35 no.2
    • /
    • pp.195-201
    • /
    • 1998
  • We let (M,g) be a noncompact complete Riemannian manifold of dimension n $\geq$ 3 with scalar curvatue S, which is close to -1. We show the existence of a conformal metric $\bar{g}$, near to g, whose scalar curvature $\bar{S}$ = -1 by gluing solutions of the corresponding partial differential equation on each bounded subsets $K_i$ with ${\bigcup}K_i$ = M.

  • PDF

ON $\eta$K-CONFORMAL KILLING TENSOR IN COSYMPLECTIC MANIFOLD WITH VANISHING COSYMPLECTIC BOCHNER CURVATURE TENSOR$^*$

  • Jun, Jae-Bok;Kim, Un-Kyu
    • Bulletin of the Korean Mathematical Society
    • /
    • v.32 no.1
    • /
    • pp.25-34
    • /
    • 1995
  • S. Tachibana [10] has defined a confornal Killing tensor in a n-dimensional Riemannian manifold M by a skew symmetric tensor $u_[ji}$ satisfying the equation $$ \nabla_k u_{ji} + \nabla_j u_{ki} = 2\rho_i g_{kj} - \rho_j g_{ki} - \rho_k g_{ji}, $$ where $g_{ji}$ is the metric tensor of M, $\nabla$ denotes the covariant derivative with respect to $g_{ji}$ and $\rho_i$ is a associated covector field of $u_{ji}$. In here, a covector field means a 1-form.

  • PDF

HOLOMORPHIC SECTIONAL CURVATURE OF THE TANGENT BUNDLE$^*$

  • Pak, Jin-Suk;Pahk, Yoi-Sook;Kwon, Jung-Hwan
    • Bulletin of the Korean Mathematical Society
    • /
    • v.32 no.1
    • /
    • pp.13-18
    • /
    • 1995
  • In order to investigate the differential structure of a Riemannian manifold (M, g), it seems a powerful tool to study the differential structure of its tangent bundle TM. In this point of view, K. Aso [1] studied, using the Sasaki metric $\tilde{g}$, the relation between the curvature tensor on (M, g) and that on (TM, $\tilde{g}$).

  • PDF

A STUDY ON SUBMANIFOLDS OF CODIMENSION 2 IN A SPHERE

  • Baik, Yong-Bai;Kim, Dae-Kyung
    • Bulletin of the Korean Mathematical Society
    • /
    • v.25 no.2
    • /
    • pp.171-174
    • /
    • 1988
  • Let M be an n-dimensional compact connected and oriented Riemannian manifold isometrically immersed in an (n+2)-dimensional Euclidean space $R^{n+2}$. Moore [5] proved that if M is of positive curvature, then M is a homotopy sphere. This result is generalized by Baldin and Mercuri [2], Baik and Shin [1] to the case of non-negative curvature, which is stated as follows: If M of non-negative curvature, then M is either a homotopy sphere or diffeomorphic to a product of two spheres. In particular, if there is a point at which the curvature operator is positive, then M is homeomorphic to a sphere.e.

  • PDF

STABLE MINIMAL HYPERSURFACES WITH WEIGHTED POINCARÉ INEQUALITY IN A RIEMANNIAN MANIFOLD

  • Nguyen, Dinh Sang;Nguyen, Thi Thanh
    • Communications of the Korean Mathematical Society
    • /
    • v.29 no.1
    • /
    • pp.123-130
    • /
    • 2014
  • In this note, we investigate stable minimal hypersurfaces with weighted Poincar$\acute{e}$ inequality. We show that we still get the vanishing property without assuming that the hypersurfaces is non-totally geodesic. This generalizes a result in [2].

ON DEFORMED-SASAKI METRIC AND HARMONICITY IN TANGENT BUNDLES

  • Boussekkine, Naima;Zagane, Abderrahim
    • Communications of the Korean Mathematical Society
    • /
    • v.35 no.3
    • /
    • pp.1019-1035
    • /
    • 2020
  • In this paper, we introduce the deformed-Sasaki metric on the tangent bundle TM over an m-dimensional Riemannian manifold (M, g), as a new natural metric on TM. We establish a necessary and sufficient conditions under which a vector field is harmonic with respect to the deformed-Sasaki Metric. We also construct some examples of harmonic vector fields.

VOLUME PROBLEMS ON LORENTZIAN MANIFOLDS

  • Kim, Seon-Bu
    • Communications of the Korean Mathematical Society
    • /
    • v.10 no.1
    • /
    • pp.163-173
    • /
    • 1995
  • Inspired in [2,9,10,17], pp. E. Ehrlich and S. B. Kim in [4] cultivated the Riccati equation related to the Raychaudhuri equation of General Relativity for the stable Jacobi tensor along the geodesics to extend the Hawking-Penrose conjugacy theorem to $$ f(t) = Ric(c(t)',c'(t)) + tr(\sigma(A)^2) $$ where $\sigma(A)$ is the shear tensor of A for the stable Jacobi tensor A with $A(t_0) = Id$ along the complete Riemannian or complete nonspacelike geodesics c.

  • PDF

LIGHTLIKE HYPERSURFACES OF AN INDEFINITE KAEHLER MANIFOLD WITH A SYMMETRIC METRIC CONNECTION OF TYPE (ℓ, m)

  • Jin, Dae Ho
    • Bulletin of the Korean Mathematical Society
    • /
    • v.53 no.4
    • /
    • pp.1171-1184
    • /
    • 2016
  • We define a new connection on semi-Riemannian manifolds, which is called a symmetric connection of type (${\ell}$, m). Semi-symmetric connection and quarter-symmetric connection are two examples of this connection such that $({\ell},m)=(1,0)$ and $({\ell},m)=(0,1)$ respectively. In this paper, we study lightlike hypersurfaces of an indefinite Kaehler manifold endowed with a symmetric metric connection of type (${\ell}$, m).

FIRST EIGENVALUES OF GEOMETRIC OPERATORS UNDER THE YAMABE FLOW

  • Fang, Shouwen;Yang, Fei
    • Bulletin of the Korean Mathematical Society
    • /
    • v.53 no.4
    • /
    • pp.1113-1122
    • /
    • 2016
  • Let (M, g(t)) be a compact Riemannian manifold and the metric g(t) evolve by the Yamabe flow. In the paper we derive the evolution for the first eigenvalue of geometric operator $-{\Delta}_{\phi}+{\frac{R}{2}}$ under the Yamabe flow, where ${\Delta}_{\phi}$ is the Witten-Laplacian operator, ${\phi}{\in}C^2(M)$, and R is the scalar curvature with respect to the metric g(t). As a consequence, we construct some monotonic quantities under the Yamabe flow.