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FIRST EIGENVALUES OF GEOMETRIC OPERATORS

UNDER THE YAMABE FLOW

Shouwen Fang and Fei Yang

Abstract. Let (M, g(t)) be a compact Riemannian manifold and the
metric g(t) evolve by the Yamabe flow. In the paper we derive the evo-

lution for the first eigenvalue of geometric operator −∆φ + R
2

under the

Yamabe flow, where ∆φ is the Witten-Laplacian operator, φ ∈ C2(M),
and R is the scalar curvature with respect to the metric g(t). As a conse-
quence, we construct some monotonic quantities under the Yamabe flow.

1. Introduction

Recently, there have been many results on the eigenvalue problems under
various geometric flows, especially the Ricci flow. In a seminal preprint [13],
Perelman introduced the so-called F -entropy functional and proved that it
is nondecreasing along the Ricci flow coupled to a backward heat-type equa-
tion. The nondecreasing of the functional F implies the monotonicity of the
first eigenvalue of −4∆ + R along the Ricci flow. With his entropy and the
monotonicity of the first eigenvalue, Perelman was able to rule out nontrivial
steady or expanding breathers on compact manifolds. In [11] Ma obtained the
monotonicity of the first eigenvalue of the Laplacian operator on a domain with
Dirichlet boundary condition along the Ricci flow. Cao [1] considered the eigen-
values of −∆+ R

2 and showed that they are nondecreasing under the Ricci flow
for manifolds with nonnegative curvature operator. Li got the monotonicity
of eigenvalues of the operator −4∆ + kR and ruled out compact steady Ricci
breathers by using their monotonicity [7]. Later, Cao [2] also improved his own
previous results and proved that the first eigenvalues of −∆+ cR (c ≥ 1

4 ) are
nondecreasing under the Ricci flow on the manifolds without curvature assump-
tion. Ling studied the first nonzero eigenvalue under the normalized Ricci flow,
gave a Faber-Krahn type of comparison theorem and a sharp bound [9], and
constructed a class of monotonic quantities on closed n-dimensional manifolds
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[10]. Moreover, Zhao obtained the evolution equation for the first eigenvalue
of the Laplacian operator along the Yamabe flow, gave some monotonic quan-
tities under the Yamabe flow [15], and proved that the first eigenvalue of the
p-Laplace operator is increasing and the differentiable almost everywhere along
the unnormalized powers of the mth mean curvature flow [16] and the unnor-
malized Hk-flow [17]. Guo, Philipowski and Thalmaier [5] derived an explicit
formula for the evolution of the lowest eigenvalue of the Laplace-Beltrami op-
erator with potential in abstract geometric flows. The first author and his
collaborators proved that the eigenvalues of some geometric operators related
to the Witten-Laplacian are nondecreasing under the Ricci flow in [3] and [4].

In this paper, we consider an n-dimensional compact Riemannian manifold
M with a time-dependent Riemannian metric g(t). (M, g(t)) is a smooth solu-
tion to the Yamabe flow equation

(1.1)
∂

∂t
gij(t) = −Rgij(t).

Let ∇ be the Levi-Civita connection on (M, g), ∆ the Laplace-Beltrami oper-
ator, dν the Riemannian volume measure, and dµ the weight volume measure
on (M, g), i.e.,

dµ = e−φ(x)dν,

where φ ∈ C2(M). Then the Witten-Laplacian (also called symmetric diffusion
operator) is defined by

∆φ = ∆−∇φ · ∇,

which is a symmetric operator on L2(M,µ).
When φ is a constant function, the Witten-Laplacian operator is just the

Laplace-Beltrami operator. As an extension of the Laplace-Beltrami operator,
many classical results in Riemannian geometry asserted in terms of the Laplace-
Beltrami operator have been extended to the analogous ones on the Witten-
Laplacian operator. For example, we can see these results ([3], [4], [8], and
[14]). Inspired by Cao [1] and Zhao [15], we study the first eigenvalue of the
geometric operator −∆φ+

R
2 under the Yamabe flow. The purpose of this paper

is to get the evolution equations for the first eigenvalue of the operator along
the Yamabe flow and the normalized Yamabe flow on compact Riemannian
manifolds. As an application, we can get some corollaries and some monotonic
quantities depending on eigenvalues.

The rest of this paper is organized as follows. In Section 2, we will de-
rive the evolution equation of the first eigenvalue under the Yamabe flow. As
applications some corollaries will be obtained. In Section 3, we will construct
some monotonic quantities along the Yamabe flow using the evolution equation
of the first eigenvalue. In Section 4, we will study the evolution equation of
the first eigenvalue under the normalized Yamabe flow and give a monotonic
quantity under the normalized Yamabe flow on a compact surface.
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2. Evolution equation of the first eigenvalue

In this section, we establish the evolution equation for the first eigenvalue
of the geometry operator −∆φ + R

2 under the Yamabe flow.
Let (M, g(t)) be a compact Riemannian manifold, and (M, g(t)), t ∈ [0, T )

be a smooth solution to the Yamabe flow equation (1.1). Let λ be an eigenvalue
of the operator −∆φ+

R
2 at time t0 where 0 ≤ t0 < T , and f the corresponding

eigenfunction, i.e.,

−∆φf +
R

2
f = λf,(2.1)

with the normalization ∫

M

f2dµ = 1.

We assume that f(x, t) is a C1-family of smooth functions on M , and satisfies
the following condition

d

dt

[∫

M

f2dµ

]

= 0.

Hence, we have
∫

M

f [ftdµ+ (fdµ)t] = 0,(2.2)

where ft =
∂f
∂t .

We also need to define a functional

λ(f, t) =

∫

M

(

−f∆φf +
R

2
f2

)

dµ =

∫

M

(

−∆φf +
R

2
f

)

fdµ,

where f satisfies the equality (2.2). At time t, if f is the eigenfunction of λ,
then

λ(f, t) = λ(t).

Let us first give the evolution equation of the above functional under the
general geometric flow.

Lemma 2.1. Suppose that λ is an eigenvalue of the operator −∆φ + R
2 , f is

the eigenfunction of λ at time t0, and the metric g(t) evolves by

∂

∂t
gij = vij ,

where vij is a symmetric two-tensor. Then we have

d

dt
λ(f, t)|t=t0 =

∫

M

(

vijfij − vijφifj +
1

2

∂R

∂t
f

)

fdµ

+

∫

M

(

vij,i −
1

2
Vj

)

fjfdµ,(2.3)

where V = Tr(v).
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The proof of Lemma 2.1 can be found in [4]. In fact, Lemma 2.1 also give us
the evolution of eigenvalues. It is easy to see that the evolution equation (2.3)
does not depend on the evolution equation of f , as long as f satisfies (2.2).
Hence we have

d

dt
λ(t) =

d

dt
λ(f, t)(2.4)

for any time t, when f is the eigenfunction of λ at time t.

Remark 2.1. The above identity (2.4) holds due to the assumption that f(x, t)
is a C1-family of smooth functions on M . Note that the Witten-Laplacian
operator is also self-adjoint similarly as the Laplacian operator. Therefore, it
is generally accepted that the eigenvalues λk and corresponding eigenfunctions
are no longer differentiable in time t. But for the first eigenvalue and first
eigenfunction, one can always assume that they are smooth in time along the
Yamabe flow (cf. [12, §6.6], [6, §7] and the references therein).

Now we can calculate the evolution equation for the first eigenvalue of the
geometric operator under the Yamabe flow.

Theorem 2.1. Let g(t), t ∈ [0, T ), be a solution to the Yamabe flow (1.1) on

a compact manifold Mn. Assume that λ(t) is the first eigenvalue of −∆φ + R
2 ,

f(x, t) > 0 satisfies

−∆φf(x, t) +
R

2
f(x, t) = λ(t)f(x, t),

and the normalization ∫

M

f(x, t)2dµ = 1.

Then under the Yamabe flow the eigenvalue λ(t) evolves by

d

dt
λ(t) =

1

2

∫

M

R|∇f |2dµ+
n− 1

2

∫

M

R|∇f − f∇φ|2dµ+
n

4

∫

M

R2f2dµ

−
n− 1

2

∫

M

Rf2∆φdµ− (
n

2
− 1)λ

∫

M

Rf2dµ.(2.5)

Proof. The proof follows from a direct computation. In Lemma 2.1, we take the
symmetric two-tensor vij = −Rgij. Note that the evolution of scalar curvature
is

∂R

∂t
= (n− 1)∆R +R2.

Using (2.4) and substituting vij = −Rgij into the equality (2.3), we have

d

dt
λ(t) =

∫

M

(−Rf∆φf +
n− 1

2
∆Rf2 +

1

2
R2f2)dµ

+ (
n

2
− 1)

∫

M

∇iRfifdµ.(2.6)



FIRST EIGENVALUES OF GEOMETRIC OPERATORS 1117

Using integration by parts, we get the following three formulas

(2.7)

∫

M

∆Rf2dµ = −2

∫

M

∇iRfifdµ+

∫

M

∇iRφif
2dµ,

(2.8)

∫

M

∇iRfifdµ = −

∫

M

Rf∆φfdµ−

∫

M

R|∇f |2dµ,

(2.9)

∫

M

∇iRφif
2dµ = −

∫

M

Rf2∆φdµ− 2

∫

M

Rfiφifdµ+

∫

M

R|∇φ|2f2dµ.

Combining (2.6), (2.7), (2.8), and (2.9), we arrive at

d

dt
λ(t) =

∫

M

(−Rf∆φf +
n− 1

2
∇iRφif

2 +
1

2
R2f2)dµ−

n

2

∫

M

∇iRfifdµ

=
1

2

∫

M

R2f2dµ+ (
n

2
− 1)

∫

M

Rf∆φfdµ+
n

2

∫

M

R|∇f |2dµ

−
n− 1

2

∫

M

Rf2∆φdµ − (n− 1)

∫

M

Rfiφifdµ

+
n− 1

2

∫

M

R|∇φ|2f2dµ

=
1

2

∫

M

R2f2dµ+
1

2

∫

M

R|∇f |2dµ+
n− 1

2

∫

M

R|∇f − f∇φ|2dµ

−
n− 1

2

∫

M

Rf2∆φdµ + (
n

2
− 1)

∫

M

Rf∆φfdµ

=
1

2

∫

M

R|∇f |2dµ+
n− 1

2

∫

M

R|∇f − f∇φ|2dµ+
n

4

∫

M

R2f2dµ

−
n− 1

2

∫

M

Rf2∆φdµ − (
n

2
− 1)λ

∫

M

Rf2dµ.

Here in the last equality we have used (2.1). �

In Theorem 2.1 if φ is a constant function, we can get the evolution for the
first eigenvalue of the geometric operator −∆+ R

2 under the Yamabe flow.

Corollary 2.1. Let g(t), t ∈ [0, T ), be a solution to the Yamabe flow (1.1) on
a compact manifold Mn. Assume that λ(t) is the first eigenvalue of −∆+ R

2 ,

f(x, t) > 0 satisfies

−∆f(x, t) +
R

2
f(x, t) = λ(t)f(x, t),

and the normalization ∫

M

f(x, t)2dν = 1.

Then under the Yamabe flow the eigenvalue λ(t) evolves by

(2.10)
d

dt
λ(t) =

n

2

∫

M

R|∇f |2dν +
n

4

∫

M

R2f2dν − (
n

2
− 1)λ

∫

M

Rf2dν.
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When M is a two-dimensional surface, we have the monotonicity of the first
eigenvalue from the above theorem and corollary.

Corollary 2.2. In dimension two, if a compact Riemannian manifold has

nonnegative scalar curvature, the first eigenvalue of the operator

−∆+
R

2

is nondecreasing under the Yamabe flow. Moreover, if the scalar curvature also

satisfies R ≥ ∆φ, the first eigenvalue of the operator

−∆φ +
R

2

is also nondecreasing under the Yamabe flow.

Remark 2.2. In two-dimension case the Yamabe flow is equivalent to the Ricci
flow. The same result under the Ricci flow was obtained by Fang, Yang and
Zhu [4] and Cao [1].

3. Some monotonic quantities

In this section, we obtain some monotonic quantities using the evolution
equation of the first eigenvalue under the Yamabe flow.

Note that the scalar curvature under the Yamabe flow evolves by

∂R

∂t
= (n− 1)∆R +R2.

Let ρ(t) and σ(t) be two solutions to the ODE y′ = y2 with initial value
respectively

ρ(0) = max
x∈M

R(0) and σ(0) = min
x∈M

R(0).

By the maximum principle, we have

R(t) ≤ ρ(t) =

(
1

max
x∈M

R(0)
− t

)
−1

(3.1)

and

R(t) ≥ σ(t) =

(
1

min
x∈M

R(0)
− t

)
−1

.(3.2)

Now it is easy to get the following monotonic quantity from Theorem 2.1.

Theorem 3.1. Suppose that g(t), t ∈ [0, T ), is a solution to the Yamabe flow

(1.1) on a compact manifold Mn with nonnegative scalar curvature and the

scalar curvature satisfies

R ≥
2(n− 1)

n
∆φ, ∀t ∈ [0, T ).
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Assume that λ(t) is the first eigenvalue of −∆φ + R
2 , f(x, t) > 0 satisfies

−∆φf(x, t) +
R

2
f(x, t) = λ(t)f(x, t),

and the normalization ∫

M

f(x, t)2dµ = 1.

Then the quantity e−
∫

t

0
[σ(τ)−n

2
ρ(τ)]dτλ(t) is nondecreasing under the Yamabe

flow.

Proof. According to (2.5), (3.1) and (3.2), we have

d

dt
λ(t) =

1

2

∫

M

R|∇f |2dµ+
n− 1

2

∫

M

R|∇f − f∇φ|2dµ+
n

4

∫

M

R2f2dµ

−
n− 1

2

∫

M

Rf2∆φdµ− (
n

2
− 1)λ

∫

M

Rf2dµ

≥ − (
n

2
− 1)λ

∫

M

Rf2dµ ≥ λ[σ(t) −
n

2
ρ(t)].

Hence the theorem follows from the last inequality. �

As a corollary, we can get other monotonic quantity when φ is a constant
function.

Corollary 3.1. Let g(t), t ∈ [0, T ), be a solution to the Yamabe flow (1.1) on
a compact manifold Mn with nonnegative scalar curvature. Assume that λ(t)
is the first eigenvalue of −∆+ R

2 , f(x, t) > 0 satisfies

−∆f(x, t) +
R

2
f(x, t) = λ(t)f(x, t),

and the normalization ∫

M

f(x, t)2dν = 1.

Then the quantity e−
∫

t

0
[σ(τ)−n

2
ρ(τ)]dτλ(t) is nondecreasing under the Yamabe

flow.

4. Eigenvalues under the normalized Yamabe flow

In the last section, we come to consider the normalized Yamabe flow, i.e.,

∂

∂t
gij = −(R− r)gij ,(4.1)

where r =
∫
M

Rdν
∫
M

dν
is the average scalar curvature. In Lemma 2.1, if we evolve

the metric by the normalized Yamabe flow, we can get the evolution for the first
eigenvalue of the geometric operator −∆φ + R

2 under the normalized Yamabe
flow.
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Theorem 4.1. Let g(t), t ∈ [0, T ), be a solution to the normalized Yamabe

flow (4.1) on a compact manifold Mn. Assume that λ(t) is the first eigenvalue

of −∆φ + R
2 , f(x, t) > 0 satisfies

−∆φf(x, t) +
R

2
f(x, t) = λ(t)f(x, t),

and the normalization ∫

M

f(x, t)2dµ = 1.

Then under the Yamabe flow the eigenvalue λ(t) evolves by

d

dt
λ(t) =

1

2

∫

M

R|∇f |2dµ+
n− 1

2

∫

M

R|∇f − f∇φ|2dµ+
n

4

∫

M

R2f2dµ

−
n− 1

2

∫

M

Rf2∆φdµ− (
n

2
− 1)λ

∫

M

Rf2dµ− rλ.

Proof. We note that the evolution of scalar curvature is

∂R

∂t
= (n− 1)∆R+R(R − r),

and
vij = −(R− r)gij .

The proof can be obtained from the same calculation with Theorem 2.1. So it
is easy to get the extra term −rλ. �

If φ is a constant function, we obtain the evolution for the first eigenvalue
of the geometric operator −∆+ R

2 under the normalized Yamabe flow.

Corollary 4.1. Let g(t), t ∈ [0, T ), be a solution to the normalized Yamabe

flow (4.1) on a compact manifold Mn. Assume that λ(t) is the first eigenvalue

of −∆+ R
2 , f(x, t) > 0 satisfies

−∆f(x, t) +
R

2
f(x, t) = λ(t)f(x, t),

and the normalization ∫

M

f(x, t)2dν = 1.

Then under the Yamabe flow the eigenvalue λ(t) evolves by

d

dt
λ(t) =

n

2

∫

M

R|∇f |2dν +
n

4

∫

M

R2f2dν − (
n

2
− 1)λ

∫

M

Rf2dν − rλ.

When M is a two-dimensional surface, r is a constant. We have the following
corollary.

Corollary 4.2. Assume that a two-dimensional compact Riemannian manifold

has nonnegative scalar curvature and R ≥ ∆φ, if λ(t) is the first eigenvalue

of the geometric operator −∆φ + R
2 , then ertλ(t) is nondecreasing under the

normalized Yamabe flow.
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Remark 4.1. The same result was obtained by Fang, Yang and Zhu [4]. When
φ is a constant function, the similar result without the scalar curvature as-
sumption was given by Cao [2].
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