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A REMARK ON H-CONTACT UNIT TANGENT

SPHERE BUNDLES

Sun Hyang Chun, Hong Kyung Pak, Jeong Hyeong Park,
and Kouei Sekigawa

Abstract. We shall give some curvature conditions for the unit tangent
sphere bundle of an n(≥ 4)-dimensional Riemannian manifold to be H-
contact. Furthermore, we provide an example illustrating Main Theorem.

1. Introduction

Studying the relationships between the geometric structures of Riemannian
manifolds and their respective unit tangent sphere bundles is one of interesting
topics in Riemannian geometry. A unit vector field V on M determines a map
between (M, g) and (T1M, g′). If the Riemannian manifold (M, g) is compact
and orientable, the energy of V is defined as the energy of the corresponding
map:

E(V ) =
1

2

∫
M

|dV |2dvg =
m

2
vol(M, g) +

1

2

∫
M

|∇V |2dvg,

where m = dimM [14]. V is said to be a harmonic vector field if it is a critical
point for the energy functional E in the set of all unit vector fields of M [14].

Perrone defined an H-contact manifold as a contact metric manifold whose
characteristic vector field ξ is harmonic, and proved that a contact metric man-
ifold is an H-contact manifold if and only if the characteristic vector field ξ is
an eigenvector of the Ricci operator [13]. Boeckx and Vanhecke [3] proved that
the unit tangent sphere bundle of a 2-dimensional or 3-dimensional Riemannian
manifold is H-contact if and only if the base manifold has constant sectional
curvature. Calvaruso and Perrone [5] obtained the same result in the case of
the n(≥ 4)-dimensional conformally flat manifold. The authors proved that the
unit tangent sphere bundle T1M of an n(≥ 3)-dimensional Einstein manifold is
H-contact if and only if the base manifold is 2-stein ([8], Main Theorem). The
main purpose of the present paper is to prove the following:
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Main Theorem. Let M = (M, g) be an n(≥ 2)-dimensional Riemannian
manifold whose unit tangent sphere bundle T1M equipped with the standard
contact metric structure (η, ḡ, ϕ, ξ) is H-contact. If dimM ̸= 4, then the scalar
curvature τ of M , the square norm |ρ|2 of the Ricci tensor and the square norm
|R|2 of the curvature tensor are all constant. If dimM = 4, then τ and |ρ|2 are
constant, however, |R|2 is not necessary constant.

This Main Theorem together with Theorem 2 in Section 5 can be comparable
with the results ([7], Theorem 1 and Theorem 2). After the proof of Main
Theorem, we shall provide an example concerning Main Theorem.

The authors would like to express their thanks to the referee for the insightful
suggestion concerning Question 1.

2. Standard contact metric structure on a unit tangent
sphere bundle

All manifolds in this paper are assumed to be of class C∞. We refer to [2]
for the basic concepts and terminologies on contact metric manifolds.

Let (M, g) be an n-dimensional Riemannian manifold and ∇ the associ-
ated Levi Civita connection. Its Riemann curvature tensor R is defined by
R(X,Y )Z = ∇X∇Y Z − ∇Y ∇XZ − ∇[X,Y ]Z for all vector fields X,Y and Z
on M . The tangent bundle of (M, g) is denoted by TM and consists of pairs
(p, u), where p is a point in M and u a tangent vector to M at p. The mapping
π : TM → M, π(p, u) = p is the natural projection from TM onto M . For a
vector field X on M , its vertical lift Xv on TM is the vector field defined by
Xvω = ω(X) ◦ π, where ω is a 1-form on M . For a Levi Civita connection ∇
on M , the horizontal lift Xh of X is defined by Xhω = ∇Xω. The tangent
bundle TM can be endowed in a natural way with a Riemannian metric g̃, the
so-called Sasaki metric, depending only on the Riemannian metric g on M . It
is determined by

g̃(Xh, Y h) = g̃(Xv, Y v) = g(X,Y ) ◦ π, g̃(Xh, Y v) = 0

for all vector fields X and Y on M . Also, TM admits an almost complex
structure tensor J defined by JXh = Xv and JXv = −Xh. Then g̃ is a
Hermitian metric for the almost complex structure J .

The unit tangent sphere bundle π̄ : T1M → M is a hypersurface of TM
given by gp(u, u) = 1. Note that π̄ = π ◦ i, where i is the immersion. A unit
normal vector field N = uv to T1M is given by the vertical lift of u for (p, u).
The horizontal lift of a vector is tangent to T1M , but the vertical lift of a
vector is not tangent to T1M in general. So, we define the tangential lift of X
to (p, u) ∈ T1M by

Xt
(p,u) = (X − g(X,u)u)v.

Clearly, the tangent space T(p,u)T1M is spanned by vectors of the form Xh and
Xt, where X ∈ TpM .
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We now define the standard contact metric structure of the unit tangent
sphere bundle T1M of a Riemannian manifold (M, g). The metric g′ on T1M is
induced from the Sasaki metric g̃ on TM . Using the almost complex structure
J on TM , we define a unit vector field ξ′, a 1-form η′ and a (1,1)-tensor field
ϕ′ on T1M by

ξ′ = −JN, ϕ′ = J − η′ ⊗N.

Since g′(X̄, ϕ′Ȳ ) = 2dη′(X̄, Ȳ ), (η′, g′, ϕ′, ξ′) is not a contact metric structure.
If we rescale by

ξ = 2ξ′, η =
1

2
η′, ϕ = ϕ′, ḡ =

1

4
g′,

we get the standard contact metric structure (η, ḡ, ϕ, ξ). From now on, we
consider T1M = (T1M,η, ḡ, ϕ, ξ) with the standard contact metric structure.

Let {e1, . . . , en = u} be an orthonormal basis of TpM . Then the Ricci tensor
ρ̄ of T1M is given by

ρ̄(Xt, Y t) = (n− 2)(g(X,Y )− g(X,u)g(Y, u))

+
1

4

n∑
i=1

g(R(u,X)ei, R(u, Y )ei),

ρ̄(Xt, Y h) =
1

2
((∇uρ)(X,Y )− (∇Xρ)(u, Y )),

ρ̄(Xh, Y h) = ρ(X,Y )− 1

2

n∑
i=1

g(R(u, ei)X,R(u, ei)Y ),

(2.1)

where ρ denotes the Ricci curvature tensor of M . We refer to [4, 7, 11, 12] for
the formula (2.1).

3. H-contact unit tangent sphere bundles

LetM = (M, g) be an n(≥ 3)-dimensional Riemannian manifold and {ei}ni=1

be a local orthonormal frame field at an arbitrary point p ∈ M . Now, we assume
that T1M is H-contact with respect to the standard contact metric structure
(η, ḡ, ϕ, ξ). Then the base manifold M satisfies the following conditions [5].

(3.1) ∇iρjk −∇jρik = 0,

(3.2) 2ρab =
n∑

i,j=1

RaibjRaiaj (a ̸= b).

From (3.1), we see easily that the scalar curvature τ of M is constant.
Now, we shall deduce several easy consequences of formula (3.2) for the later
use. We set

(3.3)

{
u = cos θea + sin θeb,

x = − sin θea + cos θeb for all a ̸= b.
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Substituting (3.3) into the left hand side of (3.2), we get (using some standard
trigonometric identities)

(3.4) 2ρ(cos θea+sin θeb,− sin θea+cos θeb)=2ρab cos(2θ)+(ρbb−ρaa) sin(2θ).

Similarly, substituting (3.3) into the right hand side of (3.2), and taking account
of (3.3), we get

n∑
i,j=1

R(cos θea + sin θeb, ei,− sin θea + cos θeb, ej)

×R(cos θea + sin θeb, ei, cos θea + sin θeb, ej)

= 2ρab cos(2θ) +
1

4

{ n∑
i,j=1

(Rbibj)
2 −

n∑
i,j=1

(Raiaj)
2
}
sin(2θ)

+
1

4

{ n∑
i,j=1

(Raibj)
2 +

n∑
i,j=1

RaibjRbiaj +
n∑

i,j=1

RaiajRbibj

− 1

2

n∑
i,j=1

(Raiaj)
2 − 1

2

n∑
i,j=1

(Rbibj)
2
}
sin(4θ).

(3.5)

Then, comparing the finite Fourier series in (3.4) and (3.5), we obtain two
equations:

(3.6) 4(ρaa − ρbb) =

n∑
i,j=1

(Raiaj)
2 −

n∑
i,j=1

(Rbibj)
2,

2
{ n∑

i,j=1

(Raibj)
2 +

n∑
i,j=1

RaibjRbiaj +

n∑
i,j=1

RaiajRbibj

}
=

n∑
i,j=1

(Raiaj)
2 +

n∑
i,j=1

(Rbibj)
2.

(3.7)

We shall recall the following fact ([8], Lemma 4.1) which plays an important
role in the proof of Main Theorem.

Lemma 1. Let Sn(n ≥ 2) be an n-dimensional unit sphere centered at the
origin 0 in an (n+1)-dimensional Euclidean space En+1 and f be a real-valued
function on Sn satisfying the condition f(u) = f(v) for any u, v ∈ Sn such that
u ⊥ v. Then, f is constant on Sn.

4. Proof of Main Theorem

Let M = (M, g) be an n(≥ 3)-dimensional Riemannian manifold satisfying
the hypothesis of Main Theorem and {ei}ni=1 be any orthonormal basis of TpM
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at an arbitrary point p ∈ M . Then from the equality (3.6), we get

(4.1) 4ρaa −
n∑

i,j=1

(Raiaj)
2 = 4ρbb −

n∑
i,j=1

(Rbibj)
2

for all a ̸= b. We may regard (TpM, gp) as an n-dimensional Euclidean space En

and the unit tangent sphere Up = {u ∈ TpM ||u| = 1} as an (n−1)-dimensional
unit sphere Sn−1(⊂ En), respectively. We now consider the smooth function
F on En = (TpM, gp) defined by

(4.2) F (u) = 4ρ(u, u)g(u, u)−
n∑

i,j=1

(Ruiuj)
2

for all u ∈ TpM . Further, we denote by f the restriction of the function F
to Sn−1 = Up. Then, applying Lemma 1 to the function f on Sn−1, we see
that there exists a function C on M satisfying the following equality for any
u ∈ Sn−1, at each point p ∈ M :

(4.3) 4ρ(u, u)−
n∑

i,j=1

(Ruiuj)
2 = C(p).

From (4.3), we have also

(4.4) 4ρ(u, u)g(u, u)−
n∑

i,j=1

(Ruiuj)
2 = C(p)g(u, u)g(u, u)

for any u ∈ TpM = En, at each point p ∈ M . We set u =
∑n

i=1 uiei. Then,
from (4.4), we have

n∑
a,b,c,d=1

{ ∑
(a,b,c,d)∈S4

(
4ρabgcd −

n∑
i,j=1

RaibjRcidj

)}
uaubucud

= C(p)
n∑

a,b,c,d=1

{ ∑
(a,b,c,d)∈S4

gabgcd

}
uaubucud

(4.5)

for any (ui) ∈ En, where S4 denotes the set of all permutations of the letters
a, b, c, d. Since we may regard both sides of the equality (4.5) as homogeneous
symmetric polynomials of degree 4, from (4.5), we have

(4.6)
∑

(a,b,c,d)∈S4

(
4ρabgcd −

n∑
i,j=1

RaibjRcidj

)
= C(p)

∑
(a,b,c,d)∈S4

gabgcd
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at each point p ∈ M . From (4.6), by direct calculations, we get

4
(
ρabgcd + ρacgbd + ρadgbc + ρbcgad + ρbdgac + ρcdgab

)
−

n∑
i,j=1

(
RaibjRcidj +RaibjRdicj +RaicjRbidj +RaicjRdibj

+RaidjRbicj +RaidjRcibj

)
= 2C(p)

(
gabgcd + gacgbd + gadgbc

)
(4.7)

for any 1 ≤ a, b, c, d ≤ n. Transvecting gcd with (4.7), we have
(4.8)

4(n+ 4)ρab + 4τgab + 2
n∑

i,j=1

ρijRaibj − 3
n∑

i,j,k=1

RkiajRkibj = 2(n+ 2)C(p)gab.

From (4.8), we have immediately

2n(n+ 2)C(p) = 4(n+ 4)τ + 4nτ − 2|ρ|2 − 3|R|2

= 8(n+ 2)τ − 2|ρ|2 − 3|R|2.
(4.9)

From (4.9), we may see that C gives rise to a smooth function on M . Thus,
from (4.9), since τ is constant, we have

(4.10) 2n(n+ 2)uC = −2u|ρ|2 − 3u|R|2

for any tangent vector u at any point p ∈ M . Now, since τ is constant, from
(4.8), taking account of the second Bianchi identity and (3.1), we have

2
n∑

a,i,j=1

(∇aρij)Raibj − 3
n∑

a,i,j,k=1

Rkiaj(∇aRkibj) = 2(n+ 2)∇bC,

and hence,

(4.11) −3

4
∇b|R|2 = 2(n+ 2)∇bC.

Thus, from (4.11), we have

(4.12) −3u|R|2 = 8(n+ 2)uC.

Thus, from (4.10) and (4.12), we have

(4.13) 8u|ρ|2 + 3(4− n)u|R|2 = 0

for any tangent vector u at each point p ∈ M . Therefore, if n = 4, then |ρ|2 is
constant.
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On the other hand, operating ∇a on both sides of (4.7) and taking sum with
respect to a, we have

4
(
∇dρbc +∇cρbd +∇bρcd

)
−

n∑
i,j=1

(
Raibj∇aRcidj +Raibj∇aRdicj +Raicj∇aRbidj

+Raicj∇aRdibj +Raidj∇aRbicj +Raidj∇aRcibj

)
= 2

(
(∇bC)gcd + (∇cC)gbd + (∇dC)gbc

)
.

(4.14)

Here, we get

n∑
a,i,j=1

Raibj∇aRcidj =
1

2

n∑
a,i,j=1

Raibj(∇aRcidj −∇iRcadj)

=− 1

2

n∑
a,i,j=1

Raibj∇cRiadj

=
1

2

n∑
a,i,j=1

Raibj∇cRaidj .

(4.15)

Similarly, we have the following.

n∑
a,i,j=1

Raibj∇aRdicj =
1

2

n∑
a,i,j=1

Raibj∇dRaicj ,

n∑
a,i,j=1

Raicj∇aRbidj =
1

2

n∑
a,i,j=1

Raicj∇bRaidj ,

n∑
a,i,j=1

Raicj∇aRdibj =
1

2

n∑
a,i,j=1

Raicj∇dRaibj ,

n∑
a,i,j=1

Raidj∇aRbicj =
1

2

n∑
a,i,j=1

Raidj∇bRaicj ,

n∑
a,i,j=1

Raidj∇aRcibj =
1

2

n∑
a,i,j=1

Raidj∇cRaibj .

(4.16)

Thus, from (4.15) and (4.16), transvecting (∇bC)gcd + (∇cC)gbd + (∇dC)gbc
with the left hand side of (4.14), we have

4
∑(

(∇bC)gcd + (∇cC)gbd + (∇dC)gbc
)
×
(
∇dρbc +∇cρbd +∇bρcd

)
− 1

2

∑(
(∇bC)gcd + (∇cC)gbd + (∇dC)gbc

)
×
(
∇b(RaicjRaidj) +∇c(RaibjRaidj) +∇d(RaibjRaicj)

)
.

(4.17)
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Similarly, transvecting (∇bC)gcd + (∇cC)gbd + (∇dC)gbc with the right hand
side of (4.14), we have

2
∑(

(∇bC)gcd + (∇cC)gbd + (∇dC)gbc
)

×
(
(∇bC)gcd + (∇cC)gbd + (∇dC)gbc

)
= 2

∑{
4(∇bC)2 + 4(∇cC)2 + 4(∇dC)2 + (∇bC)2 + (∇dC)2

+ (∇cC)2 + (∇dC)2 + (∇bC)2 + (∇cC)2
}

= 36|∇C|2,

(4.18)

and hence, from (4.17) and (4.18), we get

36|∇C|2

= − 1

2

{
2
∑

(∇bC)(∇c(RaibjRaicj)) +
∑

(∇bC)(∇b|R|2)

+ 2
∑

(∇cC)(∇b(RaicjRaibj)) +
∑

(∇cC)(∇c|R|2)

+ 2
∑

(∇dC)(∇b(RacbjRaidj)) +
∑

(∇dC)(∇d|R|2)
}

= − 9

4

∑
(∇iC)∇i|R|2.

Thus, we have

(4.19) 16|∇C|2 = −
∑

(∇iC)∇i|R|2.

From (4.11) and (4.19), we have

(4.20) 128(n+ 2)|∇C|2 = 3
∣∣∇|R|2

∣∣2.
On one hand, from (4.11), we have

(4.21) 64(n+ 2)2|∇C|2 = 9
∣∣∇|R|2

∣∣2.
Thus, from (4.21) and (4.20), we have

6
∣∣∇|R|2

∣∣2 = (n+ 2)
∣∣∇|R|2

∣∣2,
and hence,

(4.22) (n− 4)
∣∣∇|R|2

∣∣2 = 0.

Thus, if n ̸= 4, then ∇|R|2 = 0, and hence, |R|2 is a constant. Therefore,
from (4.13), it follows that |ρ|2 is a constant. This completes the proof of Main
Theorem.

Here, we remark that an η-Einstein structure is a special case of an H-
contact. In [7], we proved that if T1M is η-Einstein, then τ , |R|2 and |ρ|2 are
all constants.

Lastly, we provide an example illustrating the latter part of Main Theorem.
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Let M be a 4-dimensional real half-space given by M = {(x1, x2, x3, x4) ∈
R4| x1 > 0, (x2, x3, x4) ∈ R3} and define a Riemannian metric g on M by

(4.23) g = (gij) =


x1 0 0 0

0 x1 +
x2
3

4x1
−x2x3

4x1

x3

2x1

0 −x2x3

4x1
x1 +

x2
2

4x1
− x2

2x1

0 x3

2x1
− x2

2x1

1
x1

 ,

where gij = g( ∂
∂xi

, ∂
∂xj

) [9, 10].

Then we see that (M, g) is Ricci flat and 2-stein, and hence, the unit tangent
sphere bundle T1M equipped with the standard contact metric structure is H-
contact. However, we may also check that the square norm of the curvature
tensor is not constant [8]. Reflecting on Main Theorem, the following question
will naturally arise.

Question 1. Is an n(̸= 4)-dimensional Riemannian manifold, whose unit
tangent sphere bundle equipped with the standard contact metric structure
having H-contact, locally symmetric?

5. An application

In this section, we shall provide an application concerning Main Theorem.
First, we define symmetric (0,2)-tensor field α on M by

(5.1) α(x, y) =
∑
i,j,k

RxijkRyijk

for any x, y ∈ TpM at each point p ∈ M . An n-dimensional Einstein manifold
M = (M, g) is called a super-Einstein manifold [4] if M additionally satisfies
the condition

(5.2) α =
|R|2

n
g.

We here remark that the constancy of |R|2 follows from the condition (5.2)
for an n(̸= 4)-dimensional super-Einstein manifold ([4], Lemma 3.3). For a 4-
dimensional super-Einstein manifold, the constancy of |R|2 is usually required
([4], p. 531). We may easily check that a 2-stein manifold satisfies the condition
(5.2). It is also well-known that every harmonic space is super-Einstein [1].

For the remainder of this section, we assume that M = (M, g) is an n-
dimensional Riemannian manifold whose unit tangent sphere bundle T1M (eq-
uipped with the standard contact metric structure (η, ḡ, ϕ, ξ)) is H-contact,
unless otherwise specified. Then, since the characteristic vector field ξ is an
eigenvector field of the Ricci operator Q̄ of T1M , there exists a smooth function
λ̄ (call it the corresponding eigenvalues of Q̄) satisfying

(5.3) Q̄ξ = λ̄ξ.
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Thus, from (2.1), (4.3), (4.9) and (5.3), we have

λ̄ = 4ρ(u, u)− 2α(u, u)

= −4ρ(u, u) +
8

n
τ − 2|ρ|2

n(n+ 2)
− 3|R|2

n(n+ 2)

(5.4)

on T1M .
Further, from (2.1), we also see that the scalar curvature τ̄ of T1M is given

by

(5.5) τ̄ = 4(n− 1)(n− 2) + 4τ − α(u, u)

for any u ∈ T1M . Now, we shall prove the following:

Theorem 2. Let M = (M, g) be an n(̸= 4)-dimensional Riemannian manifold
whose unit tangent sphere bundle T1M is H-contact. Then, the followings are
equivalent:

(1) the corresponding eigenvalue λ̄ of the Ricci operator Q̄ of T1M is con-
stant.

(2) the scalar curvature τ̄ of T1M is constant.
(3) M is 2-stein.

Proof. It suffices to prove the equivalence of (1) and (3) and the equivalence
of (2) and (3). Since dimM ̸= 4, from (5.4), taking account of Main Theorem
and the result ([8]), we have the equivalence of (1) and (3).

Similarly, from (5.1), (5.5) and Main Theorem, we see easily that τ̄ is con-
stant on T1M if and only if the equality (5.2) holds on M . Thus, from (4.9)
and (4.14) ∼ (4.16), taking account of Main Theorem, we have

(5.6) S
b,c,d

∇bρcd = 0.

Thus, from (3.1) and (5.6), it follows immediately that ∇ρ = 0. By the result
of Calvaruso and Perrone ([5], Theorem 4.2), we see that M is Einstein (and
hence, 2-stein). This completes the proof of the equivalence of (2) and (3). □

Now, letM = (M, g) be a locally symmetric space whose unit tangent sphere
bundle T1M is H-contact. Then, we also see that M is Einstein (and hence,
2-stein). Thus, in this case, we see that the corresponding eigenvalue λ̄ of the
Ricci operator Q̄ of T1M and the scalar curvature of the unit tangent sphere
bundle T1M of M are both constant by virtue of Theorem 2. So, in order
to determine the base manifold whose unit tangent sphere bundle T1M is H-
contact, it seems reasonable to start with the case where the scalar curvature
of T1M is constant. Therefore, as a special case of Question 1, the following
question will be raised.

Question 2. Is n(̸= 4)-dimensional 2-stein manifold locally symmetric?
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