Browse > Article
http://dx.doi.org/10.4134/JKMS.2011.48.2.329

A REMARK ON H-CONTACT UNIT TANGENT SPHERE BUNDLES  

Chun, Sun-Hyang (DEPARTMENT OF MATHEMATICS SUNGKYUNKWAN UNIVERSITY)
Pak, Hong-Kyung (FACULTY OF INFORMATION AND SCIENCE DAEGU HAANY UNIVERSITY)
Park, Jeong-Hyeong (DEPARTMENT OF MATHEMATICS SUNGKYUNKWAN UNIVERSITY)
Sekigawa, Kouei (DEPARTMENT OF MATHEMATICS NIIGATA UNIVERSITY)
Publication Information
Journal of the Korean Mathematical Society / v.48, no.2, 2011 , pp. 329-340 More about this Journal
Abstract
We shall give some curvature conditions for the unit tangent sphere bundle of an n($\geq$ 4)-dimensional Riemannian manifold to be H-contact. Furthermore, we provide an example illustrating Main Theorem.
Keywords
unit tangent sphere bundle; H-contact manifold;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 0  (Related Records In Web of Science)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 C. M. Wood, On the energy of a unit vector eld, Geom. Dedicata 64 (1997), no. 3, 319-330.   DOI
2 A. L. Besse, Manifolds All of Whose Geodesics are Closed, Springer-Verlag, Berlin-New York, 1978.
3 D. E. Blair, Riemannian Geometry of Contact and Symplectic Manifolds, Birkhauser, Boston, Inc., Boston, MA, 2002.
4 E. Boeckx and L. Vanhecke, Harmonic and minimal vector fields on tangent and unit tangent bundles, Differential Geom. Appl. 13 (2000), no. 1, 77-93.   DOI   ScienceOn
5 E. Boeckx and L. Vanhecke, Unit tangent sphere bundles with constant scalar curvature, Czechoslovak Math. J. 51(126) (2001), no. 3, 523-544.   DOI
6 S. H. Chun, J. H. Park, and K. Sekigawa, H-contact unit tangent sphere bundles of Einstein manifolds, Quart. J. Math., (to appear), DOI:10.1093/qmath/hap025.   DOI   ScienceOn
7 G. Calvaruso and D. Perrone, H-contact unit tangent sphere bundles, Rocky Mountain J. Math. 37 (2007), no. 5, 1435-1458.   DOI   ScienceOn
8 P. Carpenter, A. Gray, and T. J. Willmore, The curvature of Einstein symmetric spaces, Quart. J. Math. Oxford Ser. (2) 33 (1982), no. 129, 45-64.   DOI
9 Y. D. Chai, S. H. Chun, J. H. Park, and K. Sekigawa, Remarks of Einstein unit tangent bundles, Monatsh. Math. 155 (2008), no. 1, 31-42.   DOI
10 P. Nurowski and M. Pruzanowski, A four-dimensional example of a Ricci flat metric admitting almost-Kahler non-Kahler structure, Classical Quantum Gravity 16 (1999), no. 3, L9-L13.   DOI   ScienceOn
11 T. Oguro, K. Sekigawa, and A. Yamada, Four-dimensional almost Kahler Einstein and weakly *-Einstein manifolds, Yokohama Math. J. 47 (1999), no. 1, 75-92.
12 J. H. Park and K. Sekigawa, When are the tangent sphere bundles of a Riemannian manifold $\eta$-Einstein?, Ann. Global Anal. Geom. 36 (2009), no. 3, 275-284.   DOI   ScienceOn
13 J. H. Park and K. Sekigawa, Notes on tangent sphere bundles of constant radii, J. Korean Math. Soc. 46 (2009), no. 6, 1255-1265.   과학기술학회마을   DOI   ScienceOn
14 D. Perrone, Contact metric manifolds whose characteristic vector eld is a harmonic vector eld, Differential Geom. Appl. 20 (2004), no. 3, 367-378.   DOI   ScienceOn