A REMARK ON H-CONTACT UNIT TANGENT SPHERE BUNDLES |
Chun, Sun-Hyang
(DEPARTMENT OF MATHEMATICS SUNGKYUNKWAN UNIVERSITY)
Pak, Hong-Kyung (FACULTY OF INFORMATION AND SCIENCE DAEGU HAANY UNIVERSITY) Park, Jeong-Hyeong (DEPARTMENT OF MATHEMATICS SUNGKYUNKWAN UNIVERSITY) Sekigawa, Kouei (DEPARTMENT OF MATHEMATICS NIIGATA UNIVERSITY) |
1 | C. M. Wood, On the energy of a unit vector eld, Geom. Dedicata 64 (1997), no. 3, 319-330. DOI |
2 | A. L. Besse, Manifolds All of Whose Geodesics are Closed, Springer-Verlag, Berlin-New York, 1978. |
3 | D. E. Blair, Riemannian Geometry of Contact and Symplectic Manifolds, Birkhauser, Boston, Inc., Boston, MA, 2002. |
4 | E. Boeckx and L. Vanhecke, Harmonic and minimal vector fields on tangent and unit tangent bundles, Differential Geom. Appl. 13 (2000), no. 1, 77-93. DOI ScienceOn |
5 | E. Boeckx and L. Vanhecke, Unit tangent sphere bundles with constant scalar curvature, Czechoslovak Math. J. 51(126) (2001), no. 3, 523-544. DOI |
6 | S. H. Chun, J. H. Park, and K. Sekigawa, H-contact unit tangent sphere bundles of Einstein manifolds, Quart. J. Math., (to appear), DOI:10.1093/qmath/hap025. DOI ScienceOn |
7 | G. Calvaruso and D. Perrone, H-contact unit tangent sphere bundles, Rocky Mountain J. Math. 37 (2007), no. 5, 1435-1458. DOI ScienceOn |
8 | P. Carpenter, A. Gray, and T. J. Willmore, The curvature of Einstein symmetric spaces, Quart. J. Math. Oxford Ser. (2) 33 (1982), no. 129, 45-64. DOI |
9 | Y. D. Chai, S. H. Chun, J. H. Park, and K. Sekigawa, Remarks of Einstein unit tangent bundles, Monatsh. Math. 155 (2008), no. 1, 31-42. DOI |
10 | P. Nurowski and M. Pruzanowski, A four-dimensional example of a Ricci flat metric admitting almost-Kahler non-Kahler structure, Classical Quantum Gravity 16 (1999), no. 3, L9-L13. DOI ScienceOn |
11 | T. Oguro, K. Sekigawa, and A. Yamada, Four-dimensional almost Kahler Einstein and weakly *-Einstein manifolds, Yokohama Math. J. 47 (1999), no. 1, 75-92. |
12 | J. H. Park and K. Sekigawa, When are the tangent sphere bundles of a Riemannian manifold -Einstein?, Ann. Global Anal. Geom. 36 (2009), no. 3, 275-284. DOI ScienceOn |
13 | J. H. Park and K. Sekigawa, Notes on tangent sphere bundles of constant radii, J. Korean Math. Soc. 46 (2009), no. 6, 1255-1265. 과학기술학회마을 DOI ScienceOn |
14 | D. Perrone, Contact metric manifolds whose characteristic vector eld is a harmonic vector eld, Differential Geom. Appl. 20 (2004), no. 3, 367-378. DOI ScienceOn |