• Title/Summary/Keyword: Riemann Problem

Search Result 66, Processing Time 0.029 seconds

Numerical Analysis of Dam-Break Flow in an Experimental Channel using Cut-Cell Method (분할격자기법을 이용한 실험수조 댐붕괴파의 수치모의)

  • Kim, Hyung-Jun;Kim, Jung-Min;Cho, Yong-Sik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.2B
    • /
    • pp.121-129
    • /
    • 2009
  • In this study, dam-break flows are simulated numerically by using an efficient and accurate Cartesian cut-cell mesh system. In the system, most of the computational domain is discretized by the Cartesian mesh, while peculiar grids are done by a cutcell mesh system. The governing equations are then solved by the finite volume method. An HLLC approximate Riemann solver and TVD-WAF method are employed to calculation of advection flux of the shallow-water equations. To validate the numerical model, the model is applied to some problems such as a steady flow convergence on an ideal bed, a steady flow over an irregular bathymetry, and a rectangular tank problem. The present model is finally applied to a simulation of dam-break flow on an experimental channel. The predicted water surface elevations are compared with available laboratory measurements. A very reasonable agreement is observed.

NUMERICAL SIMULATION OF THREE-DIMENSIONAL INTERNAL WAVES USING THE FDS SCHEME ON THE HCIB METHOD (FDS 기법과 HCIB법을 이용한 3차원 내면파 수치 모사)

  • Shin, Sang-Mook
    • Journal of computational fluids engineering
    • /
    • v.17 no.1
    • /
    • pp.8-15
    • /
    • 2012
  • A code developed using the flux-difference splitting scheme on the hybrid Cartesian/immersed boundary method is applied to simulate three-dimensional internal waves. The material interface is regarded as a moving contact discontinuity and is captured on the basis of mass conservation without any additional treatment across the interface. Inviscid fluxes are estimated using the flux-difference splitting scheme for incompressible fluids of different density. The hybrid Cartesian/immersed boundary method is used to enforce the boundary condition for a moving three-dimensional body. Immersed boundary nodes are identified within an instantaneous fluid domain on the basis of edges crossing a boundary. The dependent variables are reconstructed at the immersed boundary nodes along local normal lines to provide the boundary condition for a discretized flow problem. The internal waves are simulated, which are generated by an pitching ellipsoid near an material interface. The effects of density ratio and location of the ellipsoid on internal waves are compared.

EXPLICIT SOBOLEV ESTIMATES FOR THE CAUCHY-RIEMANN EQUATION ON PARAMETERS

  • Cho, Sang-Hyun;Choi, Jae-Seo
    • Bulletin of the Korean Mathematical Society
    • /
    • v.45 no.2
    • /
    • pp.321-338
    • /
    • 2008
  • Let $\bar{M}$ be a smoothly bounded pseudoconvex complex manifold with a family of almost complex structures $\{L^{\tau}\}_{{\tau}{\in}I}$, $0{\in}I$, which extend smoothly up to bM, the boundary of M, and assume that there is ${\lambda}{\in}C^{\infty}$(bM) which is strictly subharmonic with respect to the structure $L^0|_{bM}$ in any direction where the Levi-form vanishes on bM. We obtain explicit estimates for the $\bar{\partial}$-Neumann problem in Sobolev spaces both in space and parameter variables. Also we get a similar result when $\bar{M}$ is strongly pseudoconvex.

On the artificially-upstream flux splitting method

  • Sun M.;Takayama K.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.156-157
    • /
    • 2003
  • A simple method is proposed to split the flux vector of the Euler equations by introducing two artificial wave speeds. The direction of wave propagation can be adjusted by these two wave speeds. This idea greatly simplifies the upwinding, and leads to a new family of upwind schemes. Numerical flux function for multi-dimensional Euler equations is formulated for any grid system, structured or unstructured. A remarkable simplicity of the scheme is that it successfully achieves one-sided approximation for all waves without recourse to any matrix operation. Moreover, its accuracy is comparable with the exact Riemann solver. For 1-D Euler equations, the scheme actually surpasses the exact solver in avoiding expansion shocks without any additional entropy fix. The scheme can exactly resolve stationary contact discontinuities, and it is also freed of the carbuncle problem in multi­dimensional computations.

  • PDF

SOBOLEV ESTIMATES FOR THE LOCAL EXTENSION OF BOUNDARY HOLOMORPHIC FORMS ON REAL HYPERSURFACES IN ℂn

  • Cho, Sanghyun
    • Journal of the Korean Mathematical Society
    • /
    • v.50 no.3
    • /
    • pp.479-491
    • /
    • 2013
  • Let M be a smooth real hypersurface in complex space of dimension $n$, $n{\geq}3$, and assume that the Levi-form at $z_0$ on M has at least $(q+1)$-positive eigenvalues, $1{\leq}q{\leq}n-2$. We estimate solutions of the local $\bar{\partial}$-closed extension problem near $z_0$ for $(p,q)$-forms in Sobolev spaces. Using this result, we estimate the local solution of tangential Cauchy-Riemann equation near $z_0$ in Sobolev spaces.

DETERMINANTS OF THE LAPLACIANS ON THE n-DIMENSIONAL UNIT SPHERE Sn (n = 8, 9)

  • Choi, June-Sang
    • Honam Mathematical Journal
    • /
    • v.33 no.3
    • /
    • pp.321-333
    • /
    • 2011
  • During the last three decades, the problem of evaluation of the determinants of the Laplacians on Riemann manifolds has received considerable attention by many authors. The functional determinant for the n-dimensional sphere $S^n$ with the standard metric has been computed in several ways. Here we aim at computing the determinants of the Laplacians on $S^n$ (n = 8, 9) by mainly using ceratin known closed-form evaluations of series involving Zeta function.

EVALUATION OF CERTAIN ALTERNATING SERIES

  • Choi, Junesang
    • Honam Mathematical Journal
    • /
    • v.36 no.2
    • /
    • pp.263-273
    • /
    • 2014
  • Ever since Euler solved the so-called Basler problem of ${\zeta}(2)=\sum_{n=1}^{\infty}1/n^2$, numerous evaluations of ${\zeta}(2n)$ ($n{\in}\mathbb{N}$) as well as ${\zeta}(2)$ have been presented. Very recently, Ritelli [61] used a double integral to evaluate ${\zeta}(2)$. Modifying mainly Ritelli's double integral, here, we aim at evaluating certain interesting alternating series.

EIGENVALUE APPROACH FOR UNSTEADY FRICTION WATER HAMMER MODEL

  • Jung Bong Seog;Karney Bryan W.
    • Water Engineering Research
    • /
    • v.5 no.4
    • /
    • pp.177-183
    • /
    • 2004
  • This paper introduces an eigenvalue method of transforming the hyperbolic partial differential equations of a particular unsteady friction water hammer model into characteristic form. This method is based on the solution of the corresponding one-dimensional Riemann problem that transforms hyperbolic quasi-linear equations into ordinary differential equations along the characteristic directions, which in this case arises as the eigenvalues of the system. A mathematical justification and generalization of the eigenvalues method is provided and this approach is compared to the traditional characteristic method.

  • PDF

Two-Dimensional Slow Viscous Flow Due to a Stokeslet Near a Slit (Slit 近傍의 Stokeslet 에 의한 2次元의 느린 粘性流動)

  • 고형종;김문언
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.7 no.4
    • /
    • pp.386-391
    • /
    • 1983
  • Two-dimensional slow viscous flow due to a stokeslet near a slit is investigated on the basis of Stokes approximation. Velocity fields and stream function are obtained in closed forms by finding two sectionally holomorphic functions which are determined by reducing the problem to Riemann-Hilbert problems. The force exerted on a small cylinder is calculated for the arbitrary position of the cylinder translating in an arbitrary direction. The features of fluid flow are also investigated.

THE FORMULATION OF LINEAR THEORY OF A REFLECTED SHOCK IN CYLINDRICAL GEOMETRY

  • Kim, Ju-Hong
    • Journal of applied mathematics & informatics
    • /
    • v.9 no.2
    • /
    • pp.543-559
    • /
    • 2002
  • In this paper we formulate the linear theory for compressible fluids in cylindrical geometry with small perturbation at the material interface. We derive the first order equations in the smooth regions, boundary conditions at the shock fronts and the contact interface by linearizing the Euler equations and Rankine-Hugoniot conditions. The small amplitude solution formulated in this paper will be important for calibration of results from full numerical simulation of compressible fluids in cylindrical geometry.